Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Fleissner, Andre"
Sort by:
Expression and export: recombinant protein production systems for Aspergillus
by
Dersch, Petra
,
Fleißner, André
in
Aspergillus
,
Aspergillus - genetics
,
Aspergillus - metabolism
2010
Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.
Journal Article
A dialogue-like cell communication mechanism is conserved in filamentous ascomycete fungi and mediates interspecies interactions
by
Hellmeier, Davina
,
Hammadeh, Hamzeh Haj
,
Wernet, Valentin
in
Ascomycota - genetics
,
Ascomycota - metabolism
,
Biological Sciences
2022
In many filamentous fungi, germinating spores cooperate by fusing into supracellular structures, which develop into the mycelial colony. In the model fungus Neurospora crassa, this social behavior is mediated by an intriguing mode of communication, in which two fusing cells take turns in signal sending and receiving. Here we show that this dialogue-like cell communication mechanism is highly conserved in distantly related fungal species and mediates interspecies interactions. In mixed populations, cells of N. crassa and the phytopathogenic gray mold Botrytis cinerea coordinate their behavior over a spatial distance and establish physical contact. Subsequent cell–cell fusion is, however, restricted to germlings of the same species, indicating that species specificity of germling fusion has evolved not on the level of the signal/receptor but at subsequent levels of the fusion process. In B. cinerea, fusion and infectious growth are mutually exclusive cellular programs. Remarkably, the presence of N. crassa can reprogram this behavior and induce fusion of the gray mold on plant surfaces, potentially weakening its pathogenic potential. In a third fungal species, the nematode-trapping fungus Arthrobotrys flagrans, the conserved signaling mechanism mediates vegetative fusion within mycelial colonies but has also been repurposed for the formation of nematode-catching traps. In summary, this study identified the cell dialogue mechanism as a conserved complex trait and revealed that even distantly related fungi possess a common molecular language, which promotes cellular contact formation across species borders.
Journal Article
Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product
by
Fleißner, André
,
Brandt, Ulrike
,
Bohle, Kathrin
in
Antibodies
,
Antibody fragments
,
Applied Microbiology
2017
Background
Filamentous fungi are commonly used as production hosts for bulk enzymes in biotechnological applications. Their robust and quick growth combined with their ability to secrete large amounts of protein directly into the culture medium makes fungi appealing organisms for the generation of novel production systems. The red bread mold
Neurospora crassa
has long been established as a model system in basic research. It can be very easily genetically manipulated and a wealth of molecular tools and mutants are available. In addition,
N. crassa
is very fast growing and non-toxic. All of these features point to a high but so far untapped potential of this fungus for biotechnological applications. In this study, we used genetic engineering and bioprocess development in a design-build-test-cycle process to establish
N. crassa
as a production host for heterologous proteins.
Results
The human antibody fragment HT186-D11 was fused to a truncated version of the endogenous enzyme glucoamylase (GLA-1), which served as a carrier protein to achieve secretion into the culture medium. A modular expression cassette was constructed and tested under the control of different promoters. Protease activity was identified as a major limitation of the production strain, and the effects of different mutations causing protease deficiencies were compared. Furthermore, a parallel bioreactor system (1 L) was employed to develop and optimize a production process, including the comparison of different culture media and cultivation parameters. After successful optimization of the production strain and the cultivation conditions an exemplary scale up to a 10 L stirred tank reactor was performed.
Conclusions
The data of this study indicate that
N. crassa
is suited for the production and secretion of heterologous proteins. Controlling expression by the optimized promoter
Pccg1nr
in a fourfold protease deletion strain resulted in the successful secretion of the heterologous product with estimated yields of 3 mg/L of the fusion protein. The fungus could easily be cultivated in bioreactors and a first scale-up was successful. The system holds therefore much potential, warranting further efforts in optimization.
Journal Article
The chitin synthase regulator CSR-3 promotes cellular integrity during cell-cell fusion in the filamentous ascomycete fungus Neurospora crassa
by
Herzog, Stephanie
,
Reuning, Manuel
,
Fleißner, André
in
Cell Fusion
,
Cell Membrane - genetics
,
Cell Membrane - metabolism
2025
Cell-cell fusion in plants and fungi requires localized cell wall dissolution at the contact site to allow direct plasma membrane contact and subsequent membrane merger. Since cell wall removal carries the risk of cell rupture, the process must be tightly regulated to permit localized fusion pore formation while preserving cellular integrity. While the molecular events guiding cell-cell signaling leading to contact between fusing fungal cells have begun to unfold, the post-contact mechanisms stabilizing the forming fusion pore remain largely unknown. Here, we identify the chitin synthase regulator CSR-3 as a molecular factor promoting stable pore formation during somatic fusion in the fungal cell fusion model Neurospora crassa . CSR-3 specifically accumulates at the contact zones of fusing cells and contributes to fusion fidelity by preventing membrane rupture and lysis, particularly under calcium-limited conditions. Loss of CSR-3 leads to elevated fusion-induced lysis, a phenotype rescued by osmotic stabilization, suggesting a cell wall defect. Beyond fusion, CSR-3 is involved in septum formation, septal pore plugging, conidiation, and the response to biotic and abiotic cell wall stress. These observations support a broader role for CSR-3 in chitin-mediated cell wall remodeling. Our data indicate that CSR-3 dynamics at fusion sites depend on the MAP kinase MAK-1, implicating cell wall integrity signaling in post-contact fusion events. Consistent with this finding, phospho-mimetic analysis suggests a regulatory role for CSR-3 phosphorylation. Co-localization and genetic analyses identify the chitin synthase CHS-2 as a likely downstream target of CSR-3, with both proteins functioning in the same pathway. Together, our findings reveal that CSR-3 coordinates cell wall remodeling during cell fusion and stress responses, uncovering a crucial regulatory layer that safeguards fungal cellular integrity during dynamic developmental processes. Our observations support a model in which cell wall biosynthesis plays a critical role in cell wall remodeling during fusion pore formation.
Journal Article
Saccharomyces cerevisiae PRM1 Homolog in Neurospora crassa Is Involved in Vegetative and Sexual Cell Fusion Events but Also Has Postfertilization Functions
2009
Cell–cell fusion is essential for a variety of developmental steps in many eukaryotic organisms, during both fertilization and vegetative cell growth. Although the molecular mechanisms associated with intracellular membrane fusion are well characterized, the molecular mechanisms of plasma membrane merger between cells are poorly understood. In the filamentous fungus Neurospora crassa, cell fusion events occur during both vegetative and sexual stages of its life cycle, thus making it an attractive model for studying the molecular basis of cell fusion during vegetative growth vs. sexual reproduction. In the unicellular yeast Saccharomyces cerevisiae, one of the few proteins implicated in plasma membrane merger during mating is Prm1p; prm1Δ mutants show an ∼50% reduction in mating cell fusion. Here we report on the role of the PRM1 homolog in N. crassa. N. crassa strains with deletions of a Prm1-like gene (Prm1) showed an ∼50% reduction in both vegetative and sexual cell fusion events, suggesting that PRM1 is part of the general cell fusion machinery. However, unlike S. cerevisiae, N. crassa strains carrying a Prm1 deletion exhibited complete sterility as either a male or female mating partner, a phenotype that was not complemented in a heterokaryon with wild type (WT). Crosses with ΔPrm1 strains were blocked early in sexual development, well before development of ascogenous hyphae. The ΔPrm1 sexual defect in N. crassa was not suppressed by mutations in Sad-1, which is required for meiotic silencing of unpaired DNA (MSUD). However, mutations in Sad-1 increased the number of progeny obtained in crosses with a ΔPrm1 (Prm1-gfp) complemented strain. These data indicate multiple roles for PRM1 during sexual development.
Journal Article
Plasma Membrane Integrity During Cell–Cell Fusion and in Response to Pore-Forming Drugs Is Promoted by the Penta-EF-Hand Protein PEF1 in Neurospora crassa
by
Adis, Christian
,
Schumann, Marcel René
,
Fleißner, André
in
Antifungal Agents - pharmacology
,
Calcium
,
Calcium ions
2019
In this study, Schumann et al. identify the penta-EF-hand protein PEF1 of the genetic model fungus Neurospora crassa as part of the cellular response to different types of membrane injury... Plasma membrane damage commonly occurs during cellular growth and development. To counteract these potentially lethal injuries, membrane repair mechanisms have evolved, which promote the integrity of the lipid bilayer. Although the membrane of fungi is the target of important clinical drugs and agricultural fungicides, the molecular mechanisms which mediate membrane repair in these organisms remain elusive. Here we identify the penta-EF-hand protein PEF1 of the genetic model fungus Neurospora crassa as part of a cellular response mechanism against different types of membrane injury. Deletion of the pef1 gene in the wild type and different lysis-prone gene knockout mutants revealed a function of the protein in maintaining cell integrity during cell–cell fusion and in the presence of pore-forming drugs, such as the plant defense compound tomatine. By fluorescence and live-cell imaging we show that green fluorescent protein (GFP)-tagged PEF1 accumulates at the sites of membrane injury in a Ca2+-dependent manner. Site-directed mutagenesis identified Ca2+-binding domains essential for the spatial dynamics and function of the protein. In addition, the subcellular localization of PEF1 revealed that the syncytial fungal colony undergoes compartmentation in response to antifungal treatment. We propose that plasma membrane repair in fungi constitutes an additional line of defense against membrane-disturbing drugs, thereby expanding the current model of fungal drug resistance mechanisms.
Journal Article
Development of a molecular genetics and cell biology toolbox for the filamentous fungus Diplodia sapinea
by
Fleissner, Andre
,
Well, Lucas
,
von Bargen, Miriam
in
Agrobacterium - genetics
,
Analysis
,
Ascomycota - genetics
2024
Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species. Its impact on forest health is currently intensified, likely due to climate change, posing an increasing threat to global ecosystems and forestry. Despite extensive and successful research on this pathogen system, fundamental questions about its biology and plant-associated lifestyle remain unanswered. Addressing these questions will necessitate the development of additional experimental tools, including protocols for molecular genetics and cell biology approaches. In this study, we continue to address this need by establishing an Agrobacterium-mediated genetic transformation protocol for D. sapinea, enabling targeted mutagenesis and heterologous gene expression. We utilized this methodology to localize the histone H2B by tagging it with the fluorescent protein mCherry. Additionally, we established a time- and space-efficient laboratory-scale infection assay using two-week-old Pinus sylvestris seedlings. Integrating these tools in a proof-of-concept study enabled the visualization of D. sapinea in planta growth through the fluorescently labeled reporter strain.
Journal Article
Plasma Membrane Fusion Is Specifically Impacted by the Molecular Structure of Membrane Sterols During Vegetative Development of Neurospora crassa
by
Herzog, Stephanie
,
Schulz, Stefan
,
Brandt, Raphael
in
Acetyl-CoA C-Acetyltransferase - genetics
,
Acetyl-CoA C-Acetyltransferase - metabolism
,
Biosynthesis
2020
Abstract
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus Neurospora crassa, which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of N. crassa during vegetative fusion and of Saccharomyces cerevisiae cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
Journal Article
Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion
by
Lichius, Alexander
,
Schulz, Stefan
,
Nawrath, Thorben
in
Accumulation
,
Biological Sciences
,
Biomarkers
2016
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2),which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.
Journal Article
Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion
by
Roca, M. Gabriela
,
Leeder, Abigail C
,
Fleissner, André
in
behavior change
,
Biochemistry
,
Biological Sciences
2009
Cell-cell communication is essential for coordinating physiological responses in multicellular organisms and is required for various developmental processes, including cell migration, differentiation, and fusion. To facilitate communication, functional differences are usually required between interacting cells, which can be established either genetically or developmentally. However, genetically identical cells in the same developmental state are also capable of communicating, but must avoid self-stimulation. We hypothesized that such cells must alternate their physiological state between signal sending and receiving to allow recognition and behavioral changes. To test this hypothesis, we studied cell communication in the filamentous fungus Neurospora crassa, a simple and experimentally amenable model system. In N. crassa, germinating asexual spores (germlings) of identical genotype chemotropically sense others in close proximity, show attraction-mediated directed growth, and ultimately undergo cell fusion. Here, we report that two proteins required for cell fusion, a MAP kinase (MAK-2) and a protein of unknown molecular function (SO), exhibit rapid oscillatory recruitment to the plasma membranes of interacting germlings undergoing chemotropic interactions via directed growth. Using an inhibitable MAK-2 variant, we show that MAK-2 kinase activity is required both for chemotropic interactions and for oscillation of MAK-2 and SO to opposing cell tips. Thus, N. crassa germlings undergoing chemotropic interactions rapidly alternate between two different physiological states, associated with signal delivery and response. Such spatiotemporal coordination of signaling allows genetically identical and developmentally equivalent cells to avoid self-stimulation and to coordinate their behavior to achieve the beneficial physiological outcome of cell fusion.
Journal Article