Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
57 result(s) for "Fleming, Aaron M."
Sort by:
Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair
Reactive oxygen species (ROS) have emerged as important cellular-signaling agents for cellular survival. Herein, we demonstrate that ROS-mediated oxidation of DNA to yield 8-oxo-7,8-dihydroguanine (OG) in gene promoters is a signaling agent for gene activation. Enhanced gene expression occurs when OG is formed in guanine-rich, potential G-quadruplex–forming sequences (PQS) in promoter-coding strands, initiating base excision repair (BER) by 8-oxoguanine DNA glycosylase (OGG1), yielding an abasic site (AP). The AP enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold in which apurinic/apyrimidinic endonuclease 1 (APE1) binds, but inefficiently cleaves, the AP for activation of vascular endothelial growth factor (VEGF) or endonuclease III-like protein 1 (NTHL1) genes. These details were mapped via synthesis of OG and AP analogs at single-nucleotide precision within the promoter of a luciferase reporter system. The reporters were analyzed in human and mouse cells while selectively knocking out or down critical BER proteins to identify the impact on luciferase expression. Identification of the oxidatively modified DNA base OG to guide BER activity in a gene promoter and impact cellular phenotype ascribes an epigenetic role to OG.
Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution
The breadth and importance of RNA modifications are growing rapidly as modified ribonucleotides can impact the sequence, structure, function, stability, and fate of RNAs and their interactions with other molecules. Therefore, knowing cellular RNA modifications at single-base resolution could provide important information regarding cell status and fate. A current major limitation is the lack of methods that allow the reproducible profiling of multiple modifications simultaneously, transcriptome-wide and at single-base resolution. Here we developed RBS-Seq, a modification of RNA bisulfite sequencing that enables the sensitive and simultaneous detection of m⁵C, Ψ, and m¹A at single-base resolution transcriptome-wide. With RBS-Seq, m⁵C and m¹A are accurately detected based on known signature base mismatches and are detected here simultaneously along with Ψ sites that show a 1–2 base deletion. Structural analyses revealed the mechanism underlying the deletion signature, which involves Ψ-monobisulfite adduction, heat-induced ribose ring opening, and Mg2+-assisted reorientation, causing base-skipping during cDNA synthesis. Detection of each of these modifications through a unique chemistry allows high-precision mapping of all three modifications within the same RNA molecule, enabling covariation studies. Application of RBS-Seq on HeLa RNA revealed almost all known m⁵C, m¹A, and ψ sites in tRNAs and rRNAs and provided hundreds of new m⁵C and Ψ sites in noncoding RNAs and mRNAs. However, our results diverge greatly from earlier work, suggesting ∼10-fold fewer m⁵C sites in noncoding and coding RNAs and the absence of substantial m¹A in mRNAs. Taken together, the approaches and refined datasets in this work will greatly enable future epitranscriptome studies.
DNA modifications walk a fine line between epigenetics and mutagenesis
In the study of DNA modifications, the disciplines of epigenetics and of DNA damage and repair have evolved separately. The lines are now blurred by the realization that epigenetic modifications require DNA repair pathways for erasure and by the recent discoveries that oxidative DNA damage can upregulate gene expression.Fleming and Burrows discuss similarities between a gene-regulating DNA modification and a mutagenic one, which share a common intermediate when removed through base excision repair.
Identification of DNA lesions using a third base pair for amplification and nanopore sequencing
Damage to the genome is implicated in the progression of cancer and stress-induced diseases. DNA lesions exist in low levels, and cannot be amplified by standard PCR because they are frequently strong blocks to polymerases. Here, we describe a method for PCR amplification of lesion-containing DNA in which the site and identity could be marked, copied and sequenced. Critical for this method is installation of either the dNaM or d5SICS nucleotides at the lesion site after processing via the base excision repair process. These marker nucleotides constitute an unnatural base pair, allowing large quantities of marked DNA to be made by PCR amplification. Sanger sequencing confirms the potential for this method to locate lesions by marking, amplifying and sequencing a lesion in the KRAS gene. Detection using the α-hemolysin nanopore is also developed to analyse the markers in individual DNA strands with the potential to identify multiple lesions per strand. Genomic DNA lesions exist in low levels and cannot be amplified by standard PCR. Here, Riedl et al . report a method to amplify damaged DNA sites by replacing them via DNA repair with unnatural base pairs, which are subsequently identified by Sanger sequencing or α-hemolysin nanopore sequencing.
Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes
Genomes provide a platform for storage of chemical information that must be stable under the context in which an organism thrives. The 2‘-deoxyguanosine (G) nucleotide has the potential to provide additional chemical information beyond its Watson-Crick base-pairing capacity. Sequences with four or more runs of three G nucleotides each are potential G-quadruplex forming sequences (PQSs) that can adopt G-quadruplex folds. Herein, we analyzed sequenced genomes from the NCBI database to determine the PQS densities of the genome sequences. First, we found organisms with large genomes, including humans, alligators, and maize, have similar densities of PQSs (~300 PQSs/Mbp), and the genomes are significantly enriched in PQSs with more than four G tracks. Analysis of microorganism genomes found a greater diversity of PQS densities. In general, PQS densities positively tracked with the GC% of the genome. Exceptions to this observation were the genomes from thermophiles that had many more PQSs than expected by random chance. Analysis of the location of these PQSs in annotated genomes from the order Thermales showed these G-rich sequences to be randomly distributed; in contrast, in the order Deinococcales the PQSs were enriched and biased around transcription start sites of genes. Four representative PQSs, two each from the Thermales and Deinococcales , were studied by biophysical methods to establish the ability of them to fold to G-quadruplexes. The experiments found the two PQSs in the Thermales did not adopt G-quadruplex folds, while the two most common in the Deinococcales adopted stable parallel-stranded G-quadruplexes. The findings lead to a hypothesis that thermophilic organisms are enriched with PQSs as an unavoidable consequence to stabilize thermally their genomes to live at high temperature; in contrast, the genomes from stress-resistant bacteria found in the Deinococcales may utilize PQSs for gene regulatory purposes.
Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules
DNA abasic (AP) sites are one of the most frequent lesions in the genome and have a high mutagenic potential if unrepaired. After selective attachment of 2-aminomethyl-18-crown-6 (18c6), individual AP lesions are detected during electrophoretic translocation through the bacterial protein ion channel α-hemolysin (α-HL) embedded in a lipid bilayer. Interactions between 18c6 and Na ⁺ produce characteristic pulse-like current amplitude signatures that allow the identification of individual AP sites in single molecules of homopolymeric or heteropolymeric DNA sequences. The bulky 18c6-cation complexes also dramatically slow the DNA motion to more easily recordable levels. Further, the behaviors of the AP-18c6 adduct are different with respect to the directionalities of DNA entering the protein channel, and they can be precisely manipulated by altering the cation (Li ⁺, Na ⁺ or K ⁺) of the electrolyte. This method permits detection of multiple AP lesions per strand, which is unprecedented in other work. Additionally, insights into the thermodynamics and kinetics of 18c6-cation interactions at a single-molecule level are provided by the nanopore measurement.
Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity
Significance The bacterial protein α-hemolysin (α-HL) can form a mushroom-shaped ion channel by self-assembling across a lipid bilayer, allowing capture of a single DNA molecule inside its nanometer-scale vestibule in an electric field. Interactions between the protein nanocavity and DNA molecules generate characteristic current signals that reveal structural information. We harnessed such analytical power to investigate various G-quadruplex conformations adopted by the human telomeric sequence, namely hybrid, basket, and propeller folds that are formed under different physical conditions. Results presented here demonstrate the ability of α-HL to distinguish these G-quadruplexes based on their overall shapes and sizes and also to monitor their unraveling kinetics at different locations in the protein channel, expanding the applicability of the nanopore technology. Human telomeric DNA consists of tandem repeats of the sequence 5′-TTAGGG-3′ that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA–protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2′-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology.
Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia
Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.
RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair–π and CH–π interactions
Oxidation of guanine generates several types of DNA lesions, such as 8-oxoguanine (8OG), 5-guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp). These guanine-derived oxidative DNA lesions interfere with both replication and transcription. However, the molecular mechanism of transcription processing of Gh and Sp remains unknown. In this study, by combining biochemical and structural analysis, we revealed distinct transcriptional processing of these chemically related oxidized lesions: 8OG allows both error-free and error-prone bypass, whereas Gh or Sp causes strong stalling and only allows slow error-prone incorporation of purines. Our structural studies provide snapshots of how polymerase II (Pol II) is stalled by a nonbulky Gh lesion in a stepwise manner, including the initial lesion encounter, ATP binding, ATP incorporation, jammed translocation, and arrested states. We show that while Gh can form hydrogen bonds with adenosine monophosphate (AMP) during incorporation, this base pair hydrogen bonding is not sufficient to hold an ATP substrate in the addition site and is not stable during Pol II translocation after the chemistry step. Intriguingly, we reveal a unique structural reconfiguration of the Gh lesion in which the hydantoin ring rotates ∼90° and is perpendicular to the upstream base pair planes. The perpendicular hydantoin ring of Gh is stabilized by noncanonical lone pair–π and CH–π interactions, as well as hydrogen bonds. As a result, the Gh lesion, as a functional mimic of a 1,2-intrastrand crosslink, occupies canonical −1 and +1 template positions and compromises the loading of the downstream template base. Furthermore, we suggest Gh and Sp lesions are potential targets of transcription-coupled repair.
Deciphering nucleic acid knots
Nucleic acids can adopt G-quadruplex folds whose cellular roles remain poorly defined. Synthesis of new probes has now enabled the identification of human proteins that interact with G-quadruplexes. This could provide new clues to decipher the function of these curious folds.