Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
186 result(s) for "Fleming, Lora E."
Sort by:
Whole-system approaches to improving the health and wellbeing of healthcare workers: A systematic review
Healthcare professionals throughout the developed world report higher levels of sickness absence, dissatisfaction, distress, and \"burnout\" at work than staff in other sectors. There is a growing call for the 'triple aim' of healthcare delivery (improving patient experience and outcomes and reducing costs; to include a fourth aim: improving healthcare staff experience of healthcare delivery. A systematic review commissioned by the United Kingdom's (UK) Department of Health reviewed a large number of international healthy workplace interventions and recommended five whole-system changes to improve healthcare staff health and wellbeing: identification and response to local need, engagement of staff at all levels, and the involvement, visible leadership from, and up-skilling of, management and board-level staff. This systematic review aims to identify whole-system healthy workplace interventions in healthcare settings that incorporate (combinations of) these recommendations and determine whether they improve staff health and wellbeing. A comprehensive and systematic search of medical, education, exercise science, and social science databases was undertaken. Studies were included if they reported the results of interventions that included all healthcare staff within a healthcare setting (e.g. whole hospital; whole unit, e.g. ward) in collective activities to improve physical or mental health or promote healthy behaviours. Eleven studies were identified which incorporated at least one of the whole-system recommendations. Interventions that incorporated recommendations to address local need and engage the whole workforce fell in to four broad types: 1) pre-determined (one-size-fits-all) and no choice of activities (two studies); or 2) pre-determined and some choice of activities (one study); 3) A wide choice of a range of activities and some adaptation to local needs (five studies); or, 3) a participatory approach to creating programmes responsive and adaptive to local staff needs that have extensive choice of activities to participate in (three studies). Only five of the interventions included substantial involvement and engagement of leadership and efforts aimed at up-skilling the leadership of staff to support staff health and wellbeing. Incorporation of more of the recommendations did not appear to be related to effectiveness. The heterogeneity of study designs, populations and outcomes excluded a meta-analysis. All studies were deemed by their authors to be at least partly effective. Two studies reported statistically significant improvement in objectively measured physical health (BMI) and eight in subjective mental health. Six studies reported statistically significant positive changes in subjectively assessed health behaviours. This systematic review identified 11 studies which incorporate at least one of the Boorman recommendations and provides evidence that whole-system healthy workplace interventions can improve health and wellbeing and promote healthier behaviours in healthcare staff.
Associations between green/blue spaces and mental health across 18 countries
Living near, recreating in, and feeling psychologically connected to, the natural world are all associated with better mental health, but many exposure-related questions remain. Using data from an 18-country survey ( n  = 16,307) we explored associations between multiple measures of mental health (positive well-being, mental distress, depression/anxiety medication use) and: (a) exposures (residential/recreational visits) to different natural settings (green/inland-blue/coastal-blue spaces); and (b) nature connectedness, across season and country. People who lived in greener/coastal neighbourhoods reported higher positive well-being, but this association largely disappeared when recreational visits were controlled for. Frequency of recreational visits to green, inland-blue, and coastal-blue spaces in the last 4 weeks were all positively associated with positive well-being and negatively associated with mental distress. Associations with green space visits were relatively consistent across seasons and countries but associations with blue space visits showed greater heterogeneity. Nature connectedness was also positively associated with positive well-being and negatively associated with mental distress and was, along with green space visits, associated with a lower likelihood of using medication for depression. By contrast inland-blue space visits were associated with a greater likelihood of using anxiety medication. Results highlight the benefits of multi-exposure, multi-response, multi-country studies in exploring complexity in nature-health associations.
The Minderoo-Monaco Commission on Plastics and Human Health
Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of \"fenceline\" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic
Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century
Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.
Ciguatera Fish Poisoning in the Pacific Islands (1998 to 2008)
Ciguatera is a type of fish poisoning that occurs throughout the tropics, particularly in vulnerable island communities such as the developing Pacific Island Countries and Territories (PICTs). After consuming ciguatoxin-contaminated fish, people report a range of acute neurologic, gastrointestinal, and cardiac symptoms, with some experiencing chronic neurologic symptoms lasting weeks to months. Unfortunately, the true extent of illness and its impact on human communities and ecosystem health are still poorly understood. A questionnaire was emailed to the Health and Fisheries Authorities of the PICTs to quantify the extent of ciguatera. The data were analyzed using t-test, incidence rate ratios, ranked correlation, and regression analysis. There were 39,677 reported cases from 17 PICTs, with a mean annual incidence of 194 cases per 100,000 people across the region from 1998-2008 compared to the reported annual incidence of 104/100,000 from 1973-1983. There has been a 60% increase in the annual incidence of ciguatera between the two time periods based on PICTs that reported for both time periods. Taking into account under-reporting, in the last 35 years an estimated 500,000 Pacific islanders might have suffered from ciguatera. This level of incidence exceeds prior ciguatera estimates locally and globally, and raises the status of ciguatera to an acute and chronic illness with major public health significance. To address this significant public health problem, which is expected to increase in parallel with environmental change, well-funded multidisciplinary research teams are needed to translate research advances into practical management solutions.
Fostering human health through ocean sustainability in the 21st century
The approach of the Decade of the Ocean for Sustainable Development (2021–2030) provides a time to reflect on what we know about the complex interactions between the seas, oceans, and human health and well‐being. In the past, these interactions have been seen primarily within a risk framework, for example, adverse impacts of extreme weather, chemical pollution and increasingly, climate change. However, new research is expanding our concept of the ‘health’ of the ‘Global Ocean’, with a broader recognition of its essential and beneficial contribution to the current and future health and well‐being of humans. The seas and coasts not only provide an essential source of food, opportunities for trade and access to sustainable energy, but also the chance for people to interact with high‐quality marine environments which can lead to improvements in mental and physical health and well‐being, particularly of socio‐economically deprived individuals. By going beyond this risk framework and a purely extractive anthropocentric point of view, we can capture the true benefits, value and importance of these resources. Articulating a vision of how humans might better interact with marine ecosystems in the future, is a key first step in identifying a range of policy and management actions that can deliver our goals of fostering health and well‐being through the establishment of more sustainable interconnections with the Global Ocean. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Saltwater intrusion and human health risks for coastal populations under 2050 climate scenarios
Populations consuming saline drinking water are at greater risk of high blood pressure and potentially other adverse health outcomes. We modelled data and used available datasets to identify countries of higher vulnerability to future saltwater intrusion associated with climate change in 2050 under Representative Concentration Pathways (RCP)4.5 and RCP8.5. We developed three vulnerability criteria to capture geographies with: (1) any coastal areas with projected inland saltwater intrusion of ≥ 1 km inland, (2) > 50% of the population in coastal secondary administrative areas with reliance on groundwater for drinking water, and 3) high national average sodium urinary excretion (i.e., > 3 g/day). We identified 41 nations across all continents (except Antarctica) with ≥ 1 km of inland saltwater intrusion by 2050. Seven low- and middle-income countries of higher vulnerability were all concentrated in South/Southeast Asia. Based on these initial findings, future research should study geological nuances at the local level in higher-risk areas and co-produce with local communities contextually appropriate solutions to secure equitable access to clean drinking water.
Applying an ecosystem services framework on nature and mental health to recreational blue space visits across 18 countries
The effects of ‘nature’ on mental health and subjective well-being have yet to be consistently integrated into ecosystem service models and frameworks. To address this gap, we used data on subjective mental well-being from an 18-country survey to test a conceptual model integrating mental health with ecosystem services, initially proposed by Bratman et al. We analysed a range of individual and contextual factors in the context of 14,998 recreational visits to blue spaces, outdoor environments which prominently feature water. Consistent with the conceptual model, subjective mental well-being outcomes were dependent upon on a complex interplay of environmental type and quality, visit characteristics, and individual factors. These results have implications for public health and environmental management, as they may help identify the bluespace locations, environmental features, and key activities, that are most likely to impact well-being, but also potentially affect recreational demand on fragile aquatic ecosystems.
Moving Toward an Agenda on Ocean Health and Human Health in Europe
The integrated study of ocean health and human health is an emerging area of increasing global importance. Growing evidences demonstrate that the health of the ocean and the health of humans have always been and will continue to be, inextricably linked. Our actions towards the oceans will significantly influence the future of the whole planet and, in turn, our own health. The current review of these issues arose from a summer school in San Sebastian (Spain), from 5th-7th June, 2019. An interdisciplinary group of researchers discussed key risks (e.g. microbial pollution, pharmaceuticals, harmful algal blooms, plastic pollution) and benefits (e.g. bathing waters, recreation, tourism) of the seas and global ocean for humanity; and debated the future priorities and potential actions for a joint Oceans and Human Health research and governance programme in Europe. The aim of this review is to contribute to the emerging scientific agenda on ocean health and human health, as well as coordinate efforts with stakeholders, policy makers and the general public. This agenda operates within the larger context of the upcoming United Nations Decade of Ocean Science for Sustainable Development: 2021-2030, which strives to achieve the Sustainable Development Goals (SDG), including healthy (human) lives and well-being (SDG3) and conserving and sustainably using the oceans (SDG14), among others. In addition to summarising some of the key risks and benefits, therefore, we describe the governance of oceans and health interactions (especially in Europe), and we finish by proposing a list of elements for potential future research priorities on oceans and human health.
A mathematical, classical stratification modeling approach to disentangling the impact of weather on infectious diseases: A case study using spatio-temporally disaggregated Campylobacter surveillance data for England and Wales
Disentangling the impact of the weather on transmission of infectious diseases is crucial for health protection, preparedness and prevention. Because weather factors are co-incidental and partly correlated, we have used geography to separate out the impact of individual weather parameters on other seasonal variables using campylobacteriosis as a case study. Campylobacter infections are found worldwide and are the most common bacterial food-borne disease in developed countries, where they exhibit consistent but country specific seasonality. We developed a novel conditional incidence method, based on classical stratification, exploiting the long term, high-resolution, linkage of approximately one-million campylobacteriosis cases over 20 years in England and Wales with local meteorological datasets from diagnostic laboratory locations. The predicted incidence of campylobacteriosis increased by 1 case per million people for every 5° (Celsius) increase in temperature within the range of 8°–15°. Limited association was observed outside that range. There were strong associations with day-length. Cases tended to increase with relative humidity in the region of 75–80%, while the associations with rainfall and wind-speed were weaker. The approach is able to examine multiple factors and model how complex trends arise, e.g . the consistent steep increase in campylobacteriosis in England and Wales in May-June and its spatial variability. This transparent and straightforward approach leads to accurate predictions without relying on regression models and/or postulating specific parameterisations. A key output of the analysis is a thoroughly phenomenological description of the incidence of the disease conditional on specific local weather factors. The study can be crucially important to infer the elusive mechanism of transmission of campylobacteriosis; for instance, by simulating the conditional incidence for a postulated mechanism and compare it with the phenomenological patterns as benchmark. The findings challenge the assumption, commonly made in statistical models, that the transformed mean rate of infection for diseases like campylobacteriosis is a mere additive and combination of the environmental variables.