Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Fogg, Mark H."
Sort by:
Small Amounts of Sub-Visible Aggregates Enhance the Immunogenic Potential of Monoclonal Antibody Therapeutics
Purpose Determine the effect of minute quantities of sub-visible aggregates on the in vitro immunogenicity of clinically relevant protein therapeutics. Methods Monoclonal chimeric (rituximab) and humanized (trastuzumab) antibodies were subjected to fine-tuned stress conditions to achieve low levels (<3% of total protein) of sub-visible aggregates. The effect of stimulating human dendritic cells (DC) and CD4 + T cells with the aggregates was measured in vitro using cytokine secretion, proliferation and confocal microscopy. Results Due to its intrinsic high clinical immunogenicity, aggregation of rituximab had minimal effects on DC activation and T cell responses compared to monomeric rituximab. However, in the case of trastuzumab (low clinical immunogenicity) small quantities of aggregates led to potent CD4 + T cell proliferation as a result of strong cytokine and co-stimulatory signals derived from DC. Consistent with this, confocal studies showed that stir-stressed rituximab was rapidly internalised and associated with late endosomes of DC. Conclusions These data link minute amounts of aggregates with activation of the innate immune response, involving DC, resulting in T cell activation. Thus, when protein therapeutics with little or no clinical immunogenicity, such as trastuzumab, contain minute amounts of sub-visible aggregates, they are associated with significantly increased potential risk of clinical immunogenicity.
An Epstein-Barr Virus Encoded Inhibitor of Colony Stimulating Factor-1 Signaling Is an Important Determinant for Acute and Persistent EBV Infection
Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.
Decreased EBNA-1-specific CD8+ T cells in patients with Epstein-Barr virus-associated nasopharyngeal carcinoma
The Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1) is potentially a universal target for immune recognition of EBV-infected normal or malignant cells. EBNA-1-specific CD8+ T-cell responses have been assessed against a few epitopes presented on a limited number of HLA class I alleles. We now assess CD8+ T-cell responses to a complete panel of EBNA-1 peptides in an HLA-characterized population. We detected EBNA-1-specific CD8+ T cells in 10 of 14 healthy donors by analysis of peripheral blood mononuclear cells and EBV-specific T-cell lines. The frequent detection of CD8+ T-cell responses was confirmed by mapping EBNA-1 epitopes and demonstrating HLA class I presentation to CD8+ T cells in 6 of 6 donors, including 2 new EBNA-1 epitopes presented by HLA A0206 and A6802. Importantly, EBNA-1-specific CD8+ T cells were significantly less frequent in EBV-specific T-cell lines from patients with EBV-associated nasopharyngeal carcinoma (3 out of 22, P = 0.0003), whereas the frequency of LMP2-specific responses (14 out of 22) was not significantly different from healthy donors (11 out of 14). EBNA-1-specific CD8+ T-cell responses were rescued in approximately half of nasopharyngeal carcinoma patients by peptide and cytokine stimulation of peripheral blood mononuclear cells, suggesting these EBNA-1-specific CD8+ T cells were functionally defective in their response to EBV-infected cells. These results indicate that humans normally mount a significant EBNA-1-specific CD8+ T-cell response to EBV infection, but the immune response to this tumor antigen has been significantly altered in nasopharyngeal carcinoma patients. Overcoming this defect in EBV-specific immunity may prevent or enhance treatment of EBV-associated nasopharyngeal carcinoma.
854 Amplification & redirection of endogenous IL-15 activity with a bispecific antibody
BackgroundCytokines have the potential to reinvigorate the immune response against tumors and address shortcomings of checkpoint inhibition. We are developing a novel therapeutic modality using bispecific antibodies we refer to as Amplify•R. These antibodies engage endogenous cytokines in vivo and enhance their persistence, whilst regulating and redirecting the therapeutic effect to target cells of interest. We hypothesize this modality will overcome limitations associated with traditional approaches attempting to use recombinant cytokine or their muteins.MethodsA panel of bispecific antibodies were designed to co-engage the T and NK cell stimulating cytokine, IL-15, and the immune checkpoint, PD-1. They were expressed and evaluated for activity in IL-15 and PD-1 reporter cell-based assays. Primary human peripheral blood mononuclear cells (PBMC) were used to test the ability of bispecific antibodies to stimulate IL-15 dependent STAT5 phosphorylation in T and NK cells and for their ability to induce proliferation of T cell subsets. For in vivo studies, C57BL/6 mice humanized for PD-1 were implanted with the MC38 colorectal cancer cell line, humanized for PD-L1. Antibody was administered subcutaneously in the presence or absence of recombinant human IL-15 administered interperitoneally, and tumor growth was monitored.ResultsIn reporter cell-based assays, the bispecific antibodies were able to mediate IL-15 signaling in a controlled manner and were capable of inducing PD-1 signal blockade. Using PBMC, the bispecific antibodies were able to selectively stimulate pSTAT5 activity in PD-1+ T cells versus NK cells in a dose-dependent manner. This activity also correlated with increased proliferation of CD8+ effector memory T cells in in vitro cultures of PBMC. These in vitro results demonstrate redirection of IL-15 activity towards PD-1 expressing T cells, and away from NK cells. In in vivo studies we observed significantly more control of tumor growth with the bispecific antibodies in the presence of IL-15 relative to pembrolizumab alone or in combination with IL-15. Furthermore, upon treatment of animals expressing endogenous levels of IL-15 we observed in vivo expansion of cell subsets expressing the IL-15 receptor complex.ConclusionsWe show that the Amplify•R modality of endogenous cytokine engagement and redirection may be a viable approach in clinic, capable of overcoming limitations encountered with traditional cytokine treatment.
IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria.
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
Continental- to global-scale hydrologic and land surface models increasingly include representations of the groundwater system. Such large-scale models are essential for examining, communicating, and understanding the dynamic interactions between the Earth system above and below the land surface as well as the opportunities and limits of groundwater resources. We argue that both large-scale and regional-scale groundwater models have utility, strengths, and limitations, so continued modeling at both scales is essential and mutually beneficial. A crucial quest is how to evaluate the realism, capabilities, and performance of large-scale groundwater models given their modeling purpose of addressing large-scale science or sustainability questions as well as limitations in data availability and commensurability. Evaluation should identify if, when, or where large-scale models achieve their purpose or where opportunities for improvements exist so that such models better achieve their purpose. We suggest that reproducing the spatiotemporal details of regional-scale models and matching local data are not relevant goals. Instead, it is important to decide on reasonable model expectations regarding when a large-scale model is performing “well enough” in the context of its specific purpose. The decision of reasonable expectations is necessarily subjective even if the evaluation criteria are quantitative. Our objective is to provide recommendations for improving the evaluation of groundwater representation in continental- to global-scale models. We describe current modeling strategies and evaluation practices, and we subsequently discuss the value of three evaluation strategies: (1) comparing model outputs with available observations of groundwater levels or other state or flux variables (observation-based evaluation), (2) comparing several models with each other with or without reference to actual observations (model-based evaluation), and (3) comparing model behavior with expert expectations of hydrologic behaviors in particular regions or at particular times (expert-based evaluation). Based on evolving practices in model evaluation as well as innovations in observations, machine learning, and expert elicitation, we argue that combining observation-, model-, and expert-based model evaluation approaches, while accounting for commensurability issues, may significantly improve the realism of groundwater representation in large-scale models, thus advancing our ability for quantification, understanding, and prediction of crucial Earth science and sustainability problems. We encourage greater community-level communication and cooperation on this quest, including among global hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists focused on model development and evaluation.
Structural basis for uracil recognition by archaeal family B DNA polymerases
Deamination of cytosine to uracil in a G-C base pair is a major promutagenic event, generating G-C→A-T mutations if not repaired before DNA replication. Archaeal family B DNA polymerases are uniquely able to recognize unrepaired uracil in a template strand and stall polymerization upstream of the lesion, thereby preventing the irreversible fixation of an A-T mutation. We have now identified a 'pocket' in the N-terminal domains of archaeal DNA polymerases that is positioned to interact with the template strand and provide this ability. The structure of this pocket provides interacting groups that discriminate uracil from the four normal DNA bases (including thymine). These groups are conserved in archaeal polymerases but absent from homologous viral polymerases that are unable to recognize uracil. Using site-directed mutagenesis, we have confirmed the biological role of this pocket and have engineered specific mutations in the Pfu polymerase that confer the ability to read through template-strand uracils and carry out PCR with dUTP in place of dTTP.
A Read-Ahead Function in Archaeal DNA Polymerases Detects Promutagenic Template-Strand Uracil
Deamination of cytosine to uracil is the most common promutagenic change in DNA, and it is greatly increased at the elevated growth temperatures of hyperthermophilic archaea. If not repaired to cytosine prior to replication, uracil in a template strand directs incorporation of adenine, generating a $\\text{G}· \\text{C}$ $\\rightarrow A\\cdot $U transition mutation in half the progeny. Surprisingly, genomic analysis of archaea has so far failed to reveal any homologues of either of the known families of uracil-DNA glycosylases responsible for initiating the base-excision repair of uracil in DNA, which is otherwise universal. Here we show that DNA polymerases from several hyperthermophilic archaea (including Vent and Pfu) specifically recognize the presence of uracil in a template strand and stall DNA synthesis before mutagenic misincorporation of adenine. A specific template-checking function in a DNA polymerase has not been observed previously, and it may represent the first step in a pathway for the repair of cytosine deamination in archaea.
The Effects of Multivitamin Supplementation on Diurnal Cortisol Secretion and Perceived Stress
Recent evidence suggests that dietary intake of vitamins, in particular the B-vitamins including B6, B9 and B12 may have a number of positive effects on mood and stress. Given the effects of stress on a range of biological mechanisms including the endocrine system, it could be reasonably expected that multivitamin supplementation may also affect markers of these mechanisms such as diurnal cortisol secretion. In the current double-blind placebo-controlled study 138 adults (aged 20 to 50 years) were administered a multivitamin containing B-vitamins versus placebo over a 16-week period. Salivary cortisol measurements were taken at waking, 15-min, 30-min and at bedtime, at baseline, 8-weeks and 16-weeks. Perceived Stress (PSS) was measured at baseline, 8-weeks and 16-weeks, while blood serum measures of B6, B12 and homocysteine (HCy) as well as red cell folate (B9) were also collected at these time points. A significant interaction was found between treatment group and study visit for the Cortisol Awakening Response (CAR). Compared to placebo, at 16-weeks multivitamin supplementation was found to be associated with a near-significant trend towards an increased CAR. No significant differences in PSS were found between groups, with PSS increasing in both groups across the course of the study. Red cell folate was found to be significantly correlated with the CAR response at 16-weeks while HCy levels were not found to be associated with the CAR response, although HCy significantly correlated with waking cortisol levels at 8-weeks. A possible interpretation of the elevation in CAR associated with multivitamin supplementation is that this represents an adaptive response to everyday demands in healthy participants.