Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Folarin, Amos"
Sort by:
Using Smartphones and Wearable Devices to Monitor Behavioral Changes During COVID-19
In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)-base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.
Interstitial lung disease: a review of classification, etiology, epidemiology, clinical diagnosis, pharmacological and non-pharmacological treatment
Interstitial lung diseases (ILDs) refer to a heterogeneous and complex group of conditions characterized by inflammation, fibrosis, or both, in the interstitium of the lungs. This results in impaired gas exchange, leading to a worsening of respiratory symptoms and a decline in lung function. While the etiology of some ILDs is unclear, most cases can be traced back to factors such as genetic predispositions, environmental exposures (including allergens, toxins, and air pollution), underlying autoimmune diseases, or the use of certain medications. There has been an increase in research and evidence aimed at identifying etiology, understanding epidemiology, improving clinical diagnosis, and developing both pharmacological and non-pharmacological treatments. This review provides a comprehensive overview of the current state of knowledge in the field of interstitial lung diseases.
Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis
Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. We aimed to address these 3 challenges to inform future work in stratified analyses. Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.
Longitudinal Assessment of Seasonal Impacts and Depression Associations on Circadian Rhythm Using Multimodal Wearable Sensing: Retrospective Analysis
Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (β=-93.61, P<.001), increased sleep variability (β=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: β=0.55, P=.001; sleep offset: β=1.12, P<.001; M10 onset: β=0.73, P=.003; HR acrophase: β=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (β of PHQ-8 × spring = -31.51, P=.002) and summer (β of PHQ-8 × summer = -42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (β of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.
Measuring the effect of Non-Pharmaceutical Interventions (NPIs) on mobility during the COVID-19 pandemic using global mobility data
The implementation of governmental Non-Pharmaceutical Interventions (NPIs) has been the primary means of controlling the spread of the COVID-19 disease. One of the intended effects of these NPIs has been to reduce population mobility. Due to the huge costs of implementing these NPIs, it is essential to have a good understanding of their efficacy. Using aggregated mobility data per country, released by Apple and Google we investigated the proportional contribution of NPIs to the magnitude and rate of mobility changes at a multi-national level. NPIs with the greatest impact on the magnitude of mobility change were lockdown measures; declaring a state of emergency; closure of businesses and public services and school closures. NPIs with the greatest effect on the rate of mobility change were implementation of lockdown measures and limitation of public gatherings. As confirmed by chi-square and cluster analysis, separately recorded NPIs like school closure and closure of businesses and public services were closely correlated with each other, both in timing and occurrence. This suggests that the observed significant NPI effects are mixed with and amplified by their correlated NPI measures. We observed direct and similar effects of NPIs on both Apple and Google mobility data. In addition, although Apple and Google data were obtained by different methods they were strongly correlated indicating that they are reflecting overall mobility on a country level. The availability of this data provides an opportunity for governments to build timely, uniform and cost-effective mechanisms to monitor COVID-19 or future pandemic countermeasures.
CogStack - experiences of deploying integrated information retrieval and extraction services in a large National Health Service Foundation Trust hospital
Background Traditional health information systems are generally devised to support clinical data collection at the point of care. However, as the significance of the modern information economy expands in scope and permeates the healthcare domain, there is an increasing urgency for healthcare organisations to offer information systems that address the expectations of clinicians, researchers and the business intelligence community alike. Amongst other emergent requirements, the principal unmet need might be defined as the 3R principle (right data, right place, right time) to address deficiencies in organisational data flow while retaining the strict information governance policies that apply within the UK National Health Service (NHS). Here, we describe our work on creating and deploying a low cost structured and unstructured information retrieval and extraction architecture within King’s College Hospital, the management of governance concerns and the associated use cases and cost saving opportunities that such components present. Results To date, our CogStack architecture has processed over 300 million lines of clinical data, making it available for internal service improvement projects at King’s College London. On generated data designed to simulate real world clinical text, our de-identification algorithm achieved up to 94% precision and up to 96% recall. Conclusion We describe a toolkit which we feel is of huge value to the UK (and beyond) healthcare community. It is the only open source, easily deployable solution designed for the UK healthcare environment, in a landscape populated by expensive proprietary systems. Solutions such as these provide a crucial foundation for the genomic revolution in medicine.
Exploring biases related to the use of large language models in a multilingual depression corpus
Recent advancements in Large Language Models (LLMs) present promising opportunities for applying these technologies to aid the detection and monitoring of Major Depressive Disorder. However, demographic biases in LLMs may present challenges in the extraction of key information, where concerns persist about whether these models perform equally well across diverse populations. This study investigates how demographic factors, specifically age and gender affect the performance of LLMs in classifying depression symptom severity across multilingual datasets. By systematically balancing and evaluating datasets in English, Spanish, and Dutch, we aim to uncover performance disparities linked to demographic representation and linguistic diversity. The findings from this work can directly inform the design and deployment of more equitable LLM-based screening systems. Gender had varying effects across models, whereas age consistently produced more pronounced differences in performance. Additionally, model accuracy varied noticeably across languages. This study emphasizes the need to incorporate demographic-aware models in health-related analyses. It raises awareness of the biases that may affect their application in mental health and suggests further research on methods to mitigate these biases and enhance model generalization.
RADAR-IoT: An Open-Source, Interoperable, and Extensible IoT Gateway Framework for Health Research
IoT sensors offer a wide range of sensing capabilities, many of which have potential health applications. Existing solutions for IoT in healthcare have notable limitations, such as closed-source, limited I/O protocols, limited cloud platform support, and missing specific functionality for health use cases. Developing an open-source internet of things (IoT) gateway solution that addresses these limitations and provides reliability, broad applicability, and utility is highly desirable. Combining a wide range of sensor data streams from IoT devices with ambulatory mHealth data would open up the potential to provide a detailed 360-degree view of the relationship between patient physiology, behavior, and environment. We have developed RADAR-IoT as an open-source IoT gateway framework, to harness this potential. It aims to connect multiple IoT devices at the edge, perform limited on-device data processing and analysis, and integrate with cloud-based mobile health platforms, such as RADAR-base, enabling real-time data processing. We also present a proof-of-concept data collection from this framework, using prototype hardware in two locations. The RADAR-IoT framework, combined with the RADAR-base mHealth platform, provides a comprehensive view of a user’s health and environment by integrating static IoT sensors and wearable devices. Despite its current limitations, it offers a promising open-source solution for health research, with potential applications in managing infection control, monitoring chronic pulmonary disorders, and assisting patients with impaired motor control or cognitive ability.
Remote Assessment of Disease and Relapse in Major Depressive Disorder (RADAR-MDD): recruitment, retention, and data availability in a longitudinal remote measurement study
Background Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. Methods Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse – Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. Results Individuals with a history of MDD ( n  = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. Conclusions RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.
Long-term participant retention and engagement patterns in an app and wearable-based multinational remote digital depression study
Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants’ study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants’ age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations.