Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,138 result(s) for "Foley, Brian"
Sort by:
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
Understanding the thermal transport properties of superlattice structures is relevant to a number of possible practical applications. Now, the scattering of phonons in oxide superlattices is shown to undergo a crossover from an incoherent to a coherent regime, which in turn strongly alters their thermal behaviour. Elementary particles such as electrons 1 , 2 or photons 3 , 4 are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave–particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Sinister : once you see him, nothing can save you
Ten years ago, true crime writer Ellison Oswald made his reputation with a best-selling account of a notorious murder. Now, desperate to replicate the success of his first book, he moves his family into a home where the previous occupants were brutally executed and a child disappeared, hoping to find inspiration in the crime scene. In the home, Ellison discovers a cache of terrifying home movies, unwittingly opening the door into a nightmarish mystery.
Origin and evolution of HIV-1 subtype A6
HIV outbreaks in the Former Soviet Union (FSU) countries were characterized by repeated transmission of the HIV variant AFSU, which is now classified as a distinct subtype A sub-subtype called A6. The current study used phylogenetic/phylodynamic and signature mutation analyses to determine likely evolutionary relationship between subtype A6 and other subtype A sub-subtypes. For this study, an initial Maximum Likelihood phylogenetic analysis was performed using a total of 553 full-length, publicly available, reverse transcriptase sequences, from A1, A2, A3, A4, A5, and A6 sub-subtypes of subtype A. For phylogenetic clustering and signature mutation analysis, a total of 5961 and 3959 pol and env sequences, respectively, were used. Phylogenetic and signature mutation analysis showed that HIV-1 sub-subtype A6 likely originated from sub-subtype A1 of African origin. A6 and A1 pol and env genes shared several signature mutations that indicate genetic similarity between the two subtypes. For A6, tMRCA dated to 1975, 15 years later than that of A1. The current study provides insights into the evolution and diversification of A6 in the backdrop of FSU countries and indicates that A6 in FSU countries evolved from A1 of African origin and is getting bridged outside the FSU region.
Persistent Viral Reservoirs in Lymphoid Tissues in SIV-Infected Rhesus Macaques of Chinese-Origin on Suppressive Antiretroviral Therapy
Understanding HIV latent reservoirs in tissues is essential for the development of new strategies targeting these sites for eradication. Here, we assessed the size of latent reservoirs and the source of residual viruses in multiple lymphoid tissues of SIV-infected and fully suppressed rhesus macaques of Chinese-origin (cRMs). Eight cRMs were infected with SIVmac251 and treated with tenofovir and emtricitabine daily for 24 weeks initiated 4 weeks post-infection. Four of the eight animals reached sustained full viral suppression with undetectable viremia. The levels of cell-associated SIV DNA varied in peripheral blood mononuclear cells (PBMCs) and multiple lymphoid tissues, but with higher levels in the mesenteric lymph nodes (MesLNs). The levels of cell-associated SIV RNA also varied in different tissues. The higher frequency of viral RNA detection in the MesLNs was also observed by in situ hybridization. Consistently, the infection unit per million cells (IUPM) in the MesLNs was higher than in PBMCs and other tested lymphoid tissues by quantitative viral outgrowth assay (QVOA). Furthermore, env gp120 from tissue SIV RNA was amplified by single genome amplification. Phylogenetic analysis revealed diverse variants from tissues parallel to the viral inoculum in all viral suppressed animals. These results demonstrate that the latency and viral reservoirs in the lymphoid tissues still exist in aviremic macaques under full suppressive therapy. Moreover, the size of viral latent reservoirs differs in various lymphoid tissues with a relatively larger size in the MesLNs.
Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids
Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
Molecular epidemiology of HIV-1 subtype A in former Soviet Union countries
While in other parts of the world it is on decline, incidence of HIV infection continues to rise in the former Soviet Union (FSU) countries. The present study was conducted to investigate the patterns and modes of HIV transmission in FSU countries. We performed phylogenetic analysis of publicly available 2705 HIV-1 subtype A pol sequences from thirteen FSU countries: Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Ukraine and Uzbekistan. Our analysis showed that the clusters from FSU countries were intermixed, indicating a possible role of transmigration in HIV transmission. Injection drug use was found to be the most frequent mode of transmission, while the clusters from PWID and heterosexual transmission were intermixed, indicating bridging of HIV infection across populations. To control the expanding HIV epidemic in this region, harm reduction strategies should be focused on three modes of transmission, namely, cross-border migration, injection drug use and heterosexual.
Molecular Epidemiology of HIV-1 in Ghana: Subtype Distribution, Drug Resistance and Coreceptor Usage
The greatest HIV-1 genetic diversity is found in West/Central Africa due to the pandemic’s origins in this region, but this diversity remains understudied. We characterized HIV-1 subtype diversity (from both sub-genomic and full-genome viral sequences), drug resistance and coreceptor usage in 103 predominantly (90%) antiretroviral-naive individuals living with HIV-1 in Ghana. Full-genome HIV-1 subtyping confirmed the circulating recombinant form CRF02_AG as the dominant (53.9%) subtype in the region, with the complex recombinant 06_cpx (4%) present as well. Unique recombinants, most of which were mosaics containing CRF02_AG and/or 06_cpx, made up 37% of sequences, while “pure” subtypes were rare (<6%). Pretreatment resistance to at least one drug class was observed in 17% of the cohort, with NNRTI resistance being the most common (12%) and INSTI resistance being relatively rare (2%). CXCR4-using HIV-1 sequences were identified in 23% of participants. Overall, our findings advance our understanding of HIV-1 molecular epidemiology in Ghana. Extensive HIV-1 genetic diversity in the region appears to be fueling the ongoing creation of novel recombinants, the majority CRF02_AG-containing, in the region. The relatively high prevalence of pretreatment NNRTI resistance but low prevalence of INSTI resistance supports the use of INSTI-based first-line regimens in Ghana.
Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains
Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species. Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups. The bont complex genes within the strains examined were not randomly located but found within three regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many recombination events have occurred, including several events within the ntnh gene. One such recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster, resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of insertion events that split a rarA, recombination-associated gene, independently at the same location in both species. The analysis of the genomic sequences representing different strains reveals the presence of insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia
Background Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/Groups of Clostridia , but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. Results Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants. Conclusions This study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found.