Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Fongarland, Pascal"
Sort by:
Evaluation of the Heat Produced by the Hydrothermal Liquefaction of Wet Food Processing Residues and Model Compounds
Hydrothermal liquefaction has proven itself as a promising pathway to the valorisation of low-value wet food residues. The chemistry is complex and many questions remain about the underlying mechanism of the transformation. Little is known about the heat of reaction, or even the thermal effects, of the hydrothermal liquefaction of real biomass and its constituents. This paper explores different methods to evaluate the heat released during the liquefaction of blackcurrant pomace and brewers’ spent grains. Some model compounds have also been evaluated, such as lignin, cellulose and glutamic acid. Exothermic behaviour was observed for blackcurrant pomace and brewers’ spent grains. Results obtained in a continuous reactor are similar to those obtained in a batch reactor. The heat release has been estimated between 1 MJ/kg and 3 MJ/kg for blackcurrant pomace and brewers’ spent grains, respectively. Liquefaction of cellulose and glucose also exhibit exothermic behaviour, while the transformation of lignin and glutamic acid present a slightly endothermic behaviour.
Influence of Hydrodynamic Forces on Electroactive Bacterial Adhesion in Microbial Fuel Cell Anodes
This investigation examined the role of shear stress on the dynamic development of microbial communities within anodic biofilms in single-chamber microbial fuel cells (MFCs). Bacterial attachment to surfaces, often regarded as a crucial step in biofilm formation, may significantly contribute to the selection of electroactive bacteria (EAB). It is well established that hydrodynamic forces, particularly shear forces, have a profound influence on bacterial adhesion. This study postulates that shear stress could select EAB on the anode during the adhesion phase by detaching non-EAB. To examine this hypothesis, MFC reactors equipped with a shear stress chamber were constructed, creating specific shear stress on the anode. The progression of adhesion under various shear stress conditions (1, 10, and 50 mPa) was compared with a control MFC lacking shear stress. The structure of the microbial community was assessed using 16S rRNA gene (rrs) sequencing, and the percentage of biofilm coverage was analyzed using fluorescence microscopy. The results indicate a significant impact of shear stress on the relative abundance of specific EAB, such as Geobacter, which was higher (up to 30%) under high shear stress than under low shear stress (1%). Furthermore, it was noted that shear stress decreased the percentage of biofilm coverage on the anodic surface, suggesting that the increase in the relative abundance of specific EAB occurs through the detachment of other bacteria. These results offer insights into bacterial competition during biofilm formation and propose that shear stress could be utilized to select specific EAB to enhance the electroactivity of anodic biofilms. However, additional investigations are warranted to further explore the effects of shear stress on mature biofilms.
Glycerol Oxidation in the Liquid Phase over a Gold-Supported Catalyst: Kinetic Analysis and Modelling
The present work deals with the kinetic analysis and modelling of glycerol (GLY) oxidation in the liquid phase over a supported gold catalyst. A Langmuir-Hinshelwood model was proposed, after considering the effect of the reaction temperature, the NaOH/GLY ratio and the initial concentrations of GLY and GLY-Product mixtures. The proposed model effectively predicted the experimental results, and both the global model and the individual parameters were statistically significant. The results revealed that the C–C cleavage to form glycolic and formic acids was the most important reaction without a catalyst. On the other hand, the supported Au catalyst promoted the GLY oxidation to glyceric acid and its further conversion to tartronic and oxalic acids. Regarding the adsorption terms, glyceric acid showed the highest constant value at 60 °C, whereas those of GLY and OH− were also significant. Indeed, this adsorption role of OH− seems to be the reason why the higher NaOH/GLY ratio did not lead to higher GLY conversion in the Au-catalysed reaction.
Catalytic Oxidation of Kraft Lignin in a Trickle‐Bed Continuous Reactor
For the first time, the catalytic oxidation of Kraft lignin over a solid heterogeneous catalyst was studied in a continuous lab‐scale trickle‐bed reactor. This catalytic process is able to depolymerize Kraft lignin and produce phenolic compounds of interest such as vanillin. The impact of operating conditions such as temperature, residence time, contact time, catalyst loading and lignin concentration was evaluated. The formation of vanillin, the main phenolic compound detected in reaction products, was favored at medium temperature (200 °C), short contact time (<1gcat.min.gfeed−1), high catalyst loading (32 g) and low lignin concentration (5 g.L−1). The vanillin productivity is 30 times higher in a continuous fixed bed reactor than in a batch reactor. The catalytic hydrothermal oxidation of Kraft lignin was carried out in a continuous fixed bed triphasic reactor with a copper‐based solid catalyst. The production of phenolic compounds was observed, vanillin being the main phenolic compound. A parametric study was performed to determine the optimum operating conditions: medium temperature (200 °C), short contact time, short residence time and high fluid space velocity lead to the best productivity of vanillin and other derivatives.
Lignin Catalytic Oxidation by CuO/TiO2: Role of Catalyst in Phenolics Formation
Lignin, which is a by-product of pulp and paper mills, could be used as a starting material for the production of phenolic compounds for chemical industry. In this work, CuO/TiO 2 catalyst prepared by incipient wetness impregnation showed a significant activity in lignin oxidative depolymerization in basic aqueous medium, producing phenolic compounds using air as oxidant, at 150 °C and 20 bar pressure. The main identified products were vanillin, vanillic acid and acetovanillone. Modifications on lignin during the reaction were observed: oxidation of the residual lignin, decrease in hydroxyl moieties, decrease in β-O-4 linkages, formation of quinones and carboxylic functions. To optimize the reaction conditions, several limitations to lignin depolymerization were evaluated. These include physical limitations like formation of lignin agglomerates, diffusion limitation of lignin and vanillin inside the heterogeneous catalyst that were estimated using the Weisz-Prater criterion, and chemical limitations, particularly by over-oxidation of phenolic compounds. One of the main limitations was due to diffusion rates. When optimized, vanillin yield reached up to 5.1%. Graphical Abstract
Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells
This study investigated the effect of external resistance (Rext) on the dynamic evolution of microbial communities in anodic biofilms of single-chamber microbial fuel cells fueled with acetate and inoculated with municipal wastewater. Anodic biofilms developed under different Rext (0, 330 and 1000 ohms, and open circuit condition) were characterized as a function of time during two weeks of growth using 16S rRNA gene sequencing, cyclic voltammetry (CV) and fluorescence microscopy. The results showed a drastic difference in power output of MFCs operated with an open circuit and those operated with Rext from 0 to 1000 ohms. Two steps during the bacterial community development of the anodic biofilms were identified. During the first four days, nonspecific electroactive bacteria (non-specific EAB), dominated by Pseudomonas, Acinetobacter, and Comamonas, grew fast whatever the value of Rext. During the second step, specific EAB, dominated by Geobacter and Desulfuromonas, took over and increased over time, except in open circuit MFCs. The relative abundance of specific EAB decreased with increasing Rext. In addition, the richness and diversity of the microbial community in the anodic biofilms decreased with decreasing Rext. These results help one to understand the bacterial competition during biofilm formation and suggest that an inhibition of the attachment of non-specific electroactive bacteria to the anode surface during the first step of biofilm formation should improve electricity production.
Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization
Supported gold and platinum particles on titanium oxide catalysts were evaluated in the oxidative depolymerization of lignins toward high added value aromatics under mild conditions (T: 150 °C, Pair: 20 bar, CNaOH: 10 g/L, 1 h). Kraft and ethanol Organosolv lignins were engaged in the study. Gold catalyst showed a strong tendency to further oxidize aromatics produced from lignin depolymerization to volatile compounds leading to very low yield in target molecules. On the contrary, platinum-based catalysts were allowed to observe enhanced yields that were attributed to its ability to preserve lignin’s substructure during the reaction. A kinetic model was constructed based on the results observed, which allowed us to identify the occurrence of condensation reactions during lignin oxidation and degradation of the produced aromatic compounds as the main limitations to reach high product yields. Insights on lignin oxidation and the catalyst’s role lead through this study would help to reach higher control over lignin valorization.
Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions
Lignin is one of the main components of lignocellulosic biomass and corresponds to the first renewable source of aromatic compounds. It is obtained as a by-product in 100 million tons per year, mainly from the paper industry, from which only 2–3% is upgraded for chemistry purposes, with the rest being used as an energy source. The richness of the functional groups in lignin makes it an attractive precursor for a wide variety of aromatic compounds. With this aim, we investigated the Pd-catalyzed depolymerization of lignin under mild oxidizing conditions (air, 150 °C, and aqueous NaOH) producing oxygenated aromatic compounds, such as vanillin, vanillic acid, and acetovanillone. Palladium catalysts were implemented following different strategies, involving nanoparticles stabilized in water, and nanoparticles were supported on TiO2. Significant conversion of lignin was observed in all cases; however, depending on the catalyst nature and the synthetic methods, differences were observed in terms of selectivity in aromatic monomers, mainly vanillin. All these aspects are discussed in detail in this report, which also provides new insights into the role that Pd-catalysts can play for the lignin depolymerization mechanism.
Catalytic Liquefaction of Kraft Lignin with Solvothermal Approach
Lignin is a natural biopolymer present in lignocellulosic biomass. During paper pulp production with the Kraft process, it is solubilized and degraded in Kraft lignin and then burned to recover energy. In this paper, the solvolysis of Kraft lignin was studied in water and in water/alcohol mixtures to produce oligomers and monomers of interest, at mild temperatures (200–275 °C) under inert atmosphere. It was found that the presence of alcohol and the type of alcohol (methanol, ethanol, isopropanol) greatly influenced the amount of oligomers and monomers formed from lignin, reaching a maximum of 48 mg·glignin−1 of monomers with isopropanol as a co-solvent. The impact of the addition of various solid catalysts composed of a metal phase (Pd, Pt or Ru) supported on an oxide (Al2O3, TiO2, ZrO2) was investigated. In water, the yield in monomers was enhanced by the presence of a catalyst and particularly by Pd/ZrO2. However, with an alcoholic co-solvent, the catalyst only enhanced the formation of oligomers. Detailed characterizations of the products with FTIR, 31P-NMR, 1H-NMR and HSQC NMR were performed to elucidate the chemical transformations occurring during solvolysis. The nature of the active catalytic specie was also investigated by testing homogeneous palladium catalysts.