Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
240
result(s) for
"Forget, F."
Sort by:
Possible climates on terrestrial exoplanets
2014
What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a dynamical core, a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.
Journal Article
The paradoxes of the Late Hesperian Mars ocean
2019
The long-standing debate on the existence of ancient oceans on Mars has been recently revived by evidence for tsunami resurfacing events that date from the Late Hesperian geological era. It has been argued that these tsunami events originated from the impact of large meteorites on a deglaciated or nearly deglaciated ocean present in the northern hemisphere of Mars. Here we show that the presence of such a late ocean faces a paradox. If cold, the ocean should have been entirely frozen shortly after its formation, thus preventing the formation of tsunami events. If warm, the ice-free ocean should have produced fluvial erosion of Hesperian Mars terrains much more extensively than previously reported. To solve this apparent paradox, we suggest a list of possible tests and scenarios that could help to reconcile constraints from climate models with tsunami hypothesis. These scenarios could be tested in future dedicated studies.
Journal Article
The influence of radiatively active water ice clouds on the Martian climate
by
Forget, F.
,
Navarro, T.
,
Madeleine, J.-B.
in
Atmosphere
,
Atmospheric sciences
,
Atmospheric temperature
2012
Radiatively active water ice clouds (RAC) play a key role in shaping the thermal structure of the Martian atmosphere. In this paper, RAC are implemented in the LMD Mars Global Climate Model (GCM) and the simulated temperatures are compared to Thermal Emission Spectrometer observations over a full year. RAC change the temperature gradients and global dynamics of the atmosphere and this change in dynamics in turn implies large‐scale adiabatic temperature changes. Therefore, clouds have both a direct and indirect effect on atmospheric temperatures. RAC successfully reduce major GCM temperature biases, especially in the regions of formation of the aphelion cloud belt where a cold bias of more than 10 K is corrected. Departures from the observations are however seen in the polar regions, and highlight the need for better modeling of cloud formation and evolution. Key Points Radiatively active clouds (RAC) are implemented in the LMD global climate model Whatever the season, including RAC is required to fit the observed temperatures Renewed attention on the polar regions, where cold biases remain, is needed
Journal Article
The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter
2021
Carbon monoxide (CO) is the main product of CO
2
photolysis in the Martian atmosphere. Production of CO is balanced by its loss reaction with OH, which recycles CO into CO
2
. CO is therefore a sensitive tracer of the OH-catalysed chemistry that contributes to the stability of CO
2
in the atmosphere of Mars. To date, CO has been measured only in terms of vertically integrated column abundances, and the upper atmosphere, where CO is produced, is largely unconstrained by observations. Here we report vertical profiles of CO from 10 to 120 km, and from a broad range of latitudes, inferred from the Atmospheric Chemistry Suite on board the ExoMars Trace Gas Orbiter. At solar longitudes 164–190°, we observe an equatorial CO mixing ratio of ~1,000 ppmv (10–80 km), increasing towards the polar regions to more than 3,000 ppmv under the influence of downward transport of CO from the upper atmosphere, providing a view of the Hadley cell circulation at Mars’s equinox. Observations also cover the 2018 global dust storm, during which we observe a prominent depletion in the CO mixing ratio up to 100 km. This is indicative of increased CO oxidation in a context of unusually large high-altitude water vapour, boosting OH abundance.
The CO mixing ratio in Mars’s atmosphere increases towards the poles because of downward transport of CO from the upper atmosphere, according to an analysis of data from the ExoMars Trace Gas Orbiter.
Journal Article
Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars
2011
The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.
Journal Article
High‐Order Harmonics of Thermal Tides Observed in the Atmosphere of Mars by the Pressure Sensor on the InSight Lander
by
Forget, F.
,
Banfield, D.
,
Hernández‐Bernal, J.
in
Amplitudes
,
atmosphere
,
Atmospheric and Oceanic Physics
2024
Thermal tides are atmospheric planetary‐scale waves with periods that are harmonics of the solar day. In the Martian atmosphere thermal tides are known to be especially significant compared to any other known planet. Based on the data set of pressure timeseries produced by the InSight lander, which is unprecedented in terms of accuracy and temporal coverage, we investigate thermal tides on Mars and we find harmonics even beyond the number 24, which exceeds significantly the number of harmonics previously reported by other works. We explore comparatively the characteristics and seasonal evolution of tidal harmonics and find that even and odd harmonics exhibit some clearly differentiated trends that evolve seasonally and respond to dust events. High‐order tidal harmonics with small amplitudes could transiently interfere constructively to produce meteorologically relevant patterns. Plain Language Summary In analogy to the string of a guitar, which can oscillate in integer harmonics, planetary atmospheres exhibit oscillations that are harmonics of the solar day (Harmonic 1 with a period of 24 hr; harmonic 2, 12 hr; harmonic 3, 8 hr; etc.). These oscillations are part of the so‐called “atmospheric thermal tides”, which retain a complex global structure. They are conceptually related to ocean gravitational tides, and they have been observed in atmospheres of the solar system whose main source of energy is the light from the sun: Earth, Mars, Venus, and Titan. On Mars, thermal tides are particularly strong and they play a key role in atmospheric dynamics, presenting interactions with meteorological phenomena such as dust storms. Most studies on thermal tides focus on low‐order harmonics (1, 2, 3, and sometimes 4). In this study, we use a particularly sensitive pressure sensor that landed on Mars with the InSight mission to explore the existence of high‐order harmonics, and we find clear harmonics with very small amplitudes even beyond harmonic 24, which corresponds to 24 oscillations per solar day. We compare the characteristics of those harmonics and analyze their seasonal behavior, and we find that even and odd harmonics exhibit clearly different behaviors. Key Points Analysis of an unprecedented data set of pressure obtained by InSight suggests that tidal harmonics beyond 24 are present on Mars Even and odd modes exhibit distinct patterns with a seasonal dependency centered on equinoxes and solstices, and response to dust events
Journal Article
Geology of the InSight Landing Site on Mars
2020
The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft landed successfully on Mars and imaged the surface to characterize the surficial geology. Here we report on the geology and subsurface structure of the landing site to aid in situ geophysical investigations. InSight landed in a degraded impact crater in Elysium Planitia on a smooth sandy, granule- and pebble-rich surface with few rocks. Superposed impact craters are common and eolian bedforms are sparse. During landing, pulsed retrorockets modified the surface to reveal a near surface stratigraphy of surficial dust, over thin unconsolidated sand, underlain by a variable thickness duricrust, with poorly sorted, unconsolidated sand with rocks beneath. Impact, eolian, and mass wasting processes have dominantly modified the surface. Surface observations are consistent with expectations made from remote sensing data prior to landing indicating a surface composed of an impact-fragmented regolith overlying basaltic lava flows.
Journal Article
Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere
by
Forget, F.
,
González-Galindo, F.
,
López-Valverde, M.-Á.
in
Acoustics
,
Atmosphere
,
Atmospheric sciences
2012
Many independent measurements have shown that extremely cold temperatures are found in the Martian mesosphere. These mesospheric “cold pockets” may result from the propagation of atmospheric waves. Recent observational achievements also hint at such cold pockets by revealing mesospheric clouds formed through the condensation of CO2, the major component of the Martian atmosphere. Thus far, modeling studies addressing the presence of cold pockets in the Martian mesosphere have explored the influence of large‐scale circulations. Mesoscale phenomena, such as gravity waves, have received less attention. Here we show through multiscale meteorological modeling that mesoscale gravity waves could play a key role in the formation of mesospheric cold pockets propitious to CO2 condensation. Key Points Mesoscale gravity waves permit subcondensation mesospheric cold pockets Regions with observed CO2 clouds feature propitious conditions for GW activity Mesoscale modeling appears as a necessary complement to global scale models
Journal Article
Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity
by
Forget, F.
,
Haberle, R. M.
,
Montmessin, F.
in
Atmosphere
,
atmospheric precipitation
,
Atmospherics
2006
Surface conditions on Mars are currently cold and dry, with water ice unstable on the surface except near the poles. However, geologically recent glacierlike landforms have been identified in the tropics and the midlatitudes of Mars. The ice has been proposed to originate from either a subsurface reservoir or the atmosphere. We present high-resolution climate simulations performed with a model designed to simulate the present-day Mars water cycle but assuming a 45° obliquity as experienced by Mars a few million years ago. The model predicts ice accumulation in regions where glacier landforms are observed, on the western flanks of the great volcanoes and in the eastern Hellas region. This agreement points to an atmospheric origin for the ice and reveals how precipitation could have formed glaciers on Mars.
Journal Article
The Emirates Mars Mission
by
Jones, A.
,
Withnell, P.
,
Sharaf, O.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Atmospheric transport
2022
The Emirates Mars Mission (EMM) was launched to Mars in the summer of 2020, and is the first interplanetary spacecraft mission undertaken by the United Arab Emirates (UAE). The mission has multiple programmatic and scientific objectives, including the return of scientifically useful information about Mars. Three science instruments on the mission’s Hope Probe will make global remote sensing measurements of the Martian atmosphere from a large low-inclination orbit that will advance our understanding of atmospheric variability on daily and seasonal timescales, as well as vertical atmospheric transport and escape. The mission was conceived and developed rapidly starting in 2014, and had aggressive schedule and cost constraints that drove the design and implementation of a new spacecraft bus. A team of Emirati and American engineers worked across two continents to complete a fully functional and tested spacecraft and bring it to the launchpad in the middle of a global pandemic. EMM is being operated from the UAE and the United States (U.S.), and will make its data freely available.
Journal Article