Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Forman, Barton A."
Sort by:
Assessment and Enhancement of MERRA Land Surface Hydrology Estimates
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface hydrological fields (“MERRA-Land”) generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I). MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
Exploring the Spatiotemporal Coverage of Terrestrial Snow Mass Using a Suite of Satellite Constellation Configurations
Terrestrial snow is a vital freshwater resource for more than 1 billion people. Remotely-sensed snow observations can be used to retrieve snow mass or integrated into a snow model estimate; however, optimally leveraging remote sensing observations of snow is challenging. One reason is that no single sensor can accurately measure all types of snow because each type of sensor has its own unique limitations. Another reason is that remote sensing data is inherently discontinuous across time and space, and that the revisit cycle of remote sensing observations may not meet the requirements of a given snow applications. In order to quantify the feasible availability of remotely-sensed observations across space and time, this study simulates the sensor coverage for a suite of hypothetical snow sensors as a function of different orbital configurations and sensor properties. The information gleaned from this analysis coupled with a dynamic snow binary map is used to evaluate the efficiency of a single sensor (or constellation) to observe terrestrial snow on a global scale. The results show the efficacy achievable by different sensors over different snow types. The combination of different orbital and sensor configurations is explored to requirements of remote sensing missions that have 1-day, 3-day, or 30-day repeat intervals. The simulation results suggest that 1100 km, 550 km, and 200 km are the minimum required swath width for a polar-orbiting sensor to meet snow-related applications demanding a 1-day, 3-day, and 30-day repeat cycles, respectively. The results of this paper provide valuable input for the planning of a future global snow mission.
Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model
The NASA Catchment land surface model (CLSM) is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Moreover, a computationally-efficient empirical scheme is designed to improve CLSM estimates of SCF, snow depth, and snow water equivalent (SWE) through the assimilation of MODIS SCF observations. Results show that data assimilation (DA) improved SCF estimates compared to the open-loop model without assimilation (OL), especially in areas with ephemeral snow cover and mountainous regions. A comparison of the SCF estimates from DA against snow cover estimates from the NOAA Interactive Multisensor Snow and Ice Mapping System showed an improvement in the probability of detection of up to 28% and a reduction in false alarms by up to 6% (relative to OL). A comparison of the model snow depth estimates against Canadian Meteorological Centre analyses showed that DA successfully improved the model seasonal bias from −0.017 m for OL to −0.007 m for DA, although there was no significant change in root-mean-square differences (RMSD) (0.095 m for OL, 0.093 m for DA). The time-average of the spatial correlation coefficient also improved from 0.61 for OL to 0.63 for DA. A comparison against in situ SWE measurements also showed improvements from assimilation. The correlation increased from 0.44 for OL to 0.49 for DA, the bias improved from −0.111 m for OL to −0.100 m for DA, and the RMSD decreased from 0.186 m for OL to 0.180 m for DA.
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost conditions at 81 km2 resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-2) reanalysis were used to drive an improved version of the land component of MERRA-2 in middle-to-high northern latitudes from 1980 to 2017. The resulting simulated permafrost distribution across the Northern Hemisphere mostly captures the observed extent of continuous and discontinuous permafrost but misses the ecosystem-protected permafrost zones in western Siberia. Noticeable discrepancies also appear along the southern edge of the permafrost regions where sporadic and isolated permafrost types dominate. The evaluation of the simulated active layer thickness (ALT) against remote sensing retrievals and in situ measurements demonstrates reasonable skill except in Mongolia. The RMSE (bias) of climatological ALT is 1.22 m (−0.48 m) across all sites and 0.33 m (−0.04 m) without the Mongolia sites. In northern Alaska, both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit limited skill versus in situ measurements at the model scale. In addition, the simulated ALT has larger spatial variability than the remotely sensed ALT, although it agrees well with the retrievals when considering measurement uncertainty. Controls on the spatial variability of ALT are examined with idealized numerical experiments focusing on northern Alaska; meteorological forcing and soil types are found to have dominant impacts on the spatial variability of ALT, with vegetation also playing a role through its modulation of snow accumulation. A correlation analysis further reveals that accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT nearly everywhere over the model-simulated permafrost regions.
Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations
Over the last half century, remote sensing has transformed hydrologic science. Whereas early efforts were devoted to observation of discrete variables, we now consider spaceborne missions dedicated to interlinked global hydrologic processes.Furthermore, cloud computing and computational techniquesare accelerating analyses of these data. How will the hydrologic community use these new resources to better understand the world’s water and relatedchallenges facing society? In this Commentary, we suggest that optimizing the benefits of remote sensing for advancing hydrologic research will happen byintegratingmultidisciplinary and multisensor data, leveraging commercial satellite measurements, and employingdata assimilation, cloud computing, and machine learning.We provide several recommendations to these ends. Plain Language Summary Observations from satellites have transformed hydrologic science. Early efforts, five decades ago, mapped attributes like snow cover, rainfall, topography, and vegetation, but now we consider new missions specifically designed to study global hydrologic processes. We also take advantageof new technologies like cloud computing and artificial intelligence. We describe strategiesfor maximizing the benefits of remote sensing for hydrology, encouraging research across disciplines using multiple sensors, using new commercially available satellites, and combining remote sensing measurements with hydrologic models.
Evaluation of GEOS-Simulated L-Band Microwave Brightness Temperature using Aquarius Observations over Non-Frozen Land across North America
L-band brightness temperature (T(sub b)) is one of the key remotely-sensed variables that provides information regarding surface soil moisture conditions. In order to harness the information in T(sub b) observations, a radiative transfer model (RTM) is investigated for eventual inclusion into a data assimilation framework. In this study, T(sub b) estimates from the RTM implemented in the NASA Goddard Earth Observing System (GEOS) were evaluated against the nearly four-year record of daily T(sub b) observations collected by L-band radiometers onboard the Aquarius satellite. Statistics between the modeled and observed T(sub b) were computed over North America as a function of soil hydraulic properties and vegetation types. Overall, statistics showed good agreement between the modeled and observed T(sub b) with a relatively low, domain-average bias (0.79 K (ascending) and -2.79 K (descending)), root mean squared error (11.0 K (ascending) and 11.7 K (descending)), and unbiased root mean squared error (8.14 K (ascending) and 8.28 K (descending)). In terms of soil hydraulic parameters, large porosity and large wilting point both lead to high uncertainty in modeled T(sub b) due to the large variability in dielectric constant and surface roughness used by the RTM. The performance of the RTM as a function of vegetation type suggests better agreement in regions with broadleaf deciduous and needleleaf forests while grassland regions exhibited the worst accuracy amongst the five different vegetation types.
Snowfall Replenishes Groundwater Loss in the Great Basin of the Western United States, but Cannot Compensate for Increasing Aridification
There has been an acceleration of groundwater loss in the Great Basin (GB) of the western U.S. as determined from total water storage (TWS) measurements from the GRACE/FO satellite missions. From 2002 to 2023, there was a loss of TWS in the GB of ∼68.7 km3 which is more than six times the current volume of the Lake Mead Reservoir. In this arid/semi‐arid region, groundwater is the primary factor contributing to the decade‐scale decline in TWS. Stronger declining trends are found in the western versus the eastern GB. Snow loading is the major cause of seasonal fluctuations of TWS in the GB. Despite annual replenishment of groundwater by snow, the downward trend persists even in notable snow years. Likely causes include declining snow mass, upstream water diversions and increased evaporation/sublimation due to increasing temperatures. Dire consequences for humans and wildlife are associated with this large loss of groundwater. Plain Language Summary The 21st Century megadrought in the southwestern U.S. caused a dramatic acceleration of groundwater loss in the Great Basin (GB) of the western U.S. as determined from changes in the Earth's gravity measured by the GRACE satellites. Groundwater is a major component of total water storage (TWS) in the GB, but snowfall and snowmelt are the major causes of seasonal fluctuations of TWS. As a snowpack accumulates or melts, water is redistributed causing a rapid regional change in gravity that can be measured from space. From 2002 to 2023, there is a substantial loss of groundwater in the GB of ∼68.7 km3 which is more than six times the current volume of water in the Lake Mead Reservoir in Arizona/Nevada. Stronger declining trends of groundwater loss are found in the western part of the GB while weaker declining trends are found in the eastern part. Despite annual replenishment by snowfall, even in notable snow years like 2010–2011, 2016–2017, 2018–2019, and 2022–2023, the downward trend of groundwater depletion persists. Likely causes for this decline include declining snow mass, upstream water diversions and increased evaporation/sublimation due to increasing air and surface temperatures. Groundwater depletion is associated with dire consequences for humans and wildlife. Key Points Snow accumulation in the Great Basin (GB) triggers an increase in total water storage (TWS) while snow ablation triggers a drop in TWS There is an 68.7 km3 loss of groundwater in the GB from 2002 to 2023 which is more than six times greater than the current volume of Lake Mead The 2002–2023 TWS decline in the GB is more pronounced in the western GB than in the eastern GB
Soil Moisture Estimation in South Asia via Assimilation of SMAP Retrievals
A soil moisture retrieval assimilation framework is implemented across South Asia in an attempt to improve regional soil moisture estimation as well as to provide a consistent regional soil moisture dataset. This study aims to improve the spatiotemporal variability of soil moisture estimates by assimilating Soil Moisture Active Passive (SMAP) near-surface soil moisture retrievals into a land surface model. The Noah-MP (v4.0.1) land surface model is run within the NASA Land Information System software framework to model regional land surface processes. NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA2) and Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals (IMERG) provide the meteorological boundary conditions to the land surface model. Assimilation is carried out using both cumulative distribution function (CDF)-corrected (DA-CDF) and uncorrected SMAP retrievals (DA-NoCDF). CDF matching is applied to correct the statistical moments of the SMAP soil moisture retrieval relative to the land surface model. Comparison of assimilated and model-only soil moisture estimates with publicly available in situ measurements highlights the relative improvement in soil moisture estimates by assimilating SMAP retrievals. Across the Tibetan Plateau, DA-NoCDF reduced the mean bias and RMSE by 8.4 % and 9.4 %, even though assimilation only occurred during less than 10 % of the study period due to frozen (or partially frozen) soil conditions. The best goodness-of-fit statistics were achieved for the IMERG DA-NoCDF soil moisture experiment. The general lack of publicly available in situ measurements across irrigated areas limited a domain-wide direct model validation. However, comparison with regional irrigation patterns suggested correction of biases associated with an unmodeled hydrologic phenomenon (i.e., anthropogenic influence via irrigation) as a result of SMAP soil moisture retrieval assimilation. The greatest sensitivity to assimilation was observed in cropland areas. Improvements in soil moisture potentially translate into improved spatiotemporal patterns of modeled evapotranspiration, although limited influence from soil moisture assimilation was observed on modeled processes within the carbon cycle such as gross primary production. Improvement in fine-scale modeled estimates by assimilating coarse-scale retrievals highlights the potential of this approach for soil moisture estimation over data-scarce regions.
Exploring the Utility of Machine Learning-Based Passive Microwave Brightness Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia
This study explores the use of a support vector machine (SVM) as the observation operator within a passive microwave brightness temperature data assimilation framework (herein SVM-DA) to enhance the characterization of snow water equivalent (SWE) over High Mountain Asia (HMA). A series of synthetic twin experiments were conducted with the NASA Land Information System (LIS) at a number of locations across HMA. Overall, the SVM-DA framework is effective at improving SWE estimates (~70% reduction in RMSE relative to the Open Loop) for SWE depths less than 200 mm during dry snowpack conditions. The SVM-DA framework also improves SWE estimates in deep, wet snow (~45% reduction in RMSE) when snow liquid water is well estimated by the land surface model, but can lead to model degradation when snow liquid water estimates diverge from values used during SVM training. In particular, two key challenges of using the SVM-DA framework were observed over deep, wet snowpacks. First, variations in snow liquid water content dominate the brightness temperature spectral difference (TB) signal associated with emission from a wet snowpack, which can lead to abrupt changes in SWE during the analysis update. Second, the ensemble of SVM-based predictions can collapse (i.e., yield a near-zero standard deviation across the ensemble) when prior estimates of snow are outside the range of snow inputs used during the SVM training procedure. Such a scenario can lead to the presence of spurious error correlations between SWE and TB, and as a consequence, can result in degraded SWE estimates from the analysis update. These degraded analysis updates can be largely mitigated by applying rule-based approaches. For example, restricting the SWE update when the standard deviation of the predicted TB is greater than 0.05 K helps prevent the occurrence of filter divergence. Similarly, adding a thin layer (i.e., 5 mm) of SWE when the synthetic TB is larger than 5 K can improve SVM-DA performance in the presence of a precipitation dry bias. The study demonstrates that a carefully constructed SVM-DA framework cognizant of the inherent limitations of passive microwave-based SWE estimation holds promise for snow mass data assimilation.
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
The Snow Ensemble Uncertainty Project (SEUP) is an effort to establish a baseline characterization of snow water equivalent (SWE) uncertainty across North America with the goal of informing global snow observational needs. An ensemble-based modeling approach, encompassing a suite of current operational models is used to assess the uncertainty in SWE and total snow storage (SWS) estimation over North America during the 2009–2017 period. The highest modeled SWE uncertainty is observed in mountainous regions, likely due to the relatively deep snow, forcing uncertainties, and variability between the different models in resolving the snow processes over complex terrain. This highlights a need for high-resolution observations in mountains to capture the high spatial SWE variability. The greatest SWS is found in Tundra regions where, even though the spatiotemporal variability in modeled SWE is low, there is considerable uncertainty in the SWS estimates due to the large areal extent over which those estimates are spread. This highlights the need for high accuracy in snow estimations across the Tundra. In midlatitude boreal forests, large uncertainties in both SWE and SWS indicate that vegetation–snow impacts are a critical area where focused improvements to modeled snow estimation efforts need to be made. Finally, the SEUP results indicate that SWE uncertainty is driving runoff uncertainty, and measurements may be beneficial in reducing uncertainty in SWE and runoff, during the melt season at high latitudes (e.g., Tundra and Taiga regions) and in the western mountain regions, whereas observations at (or near) peak SWE accumulation are more helpful over the midlatitudes.