Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Fosaa, Anna Maria"
Sort by:
Ecological and Social Dimensions of Ecosystem Restoration in the Nordic Countries
by
Aradòttir, Àsa L.
,
Hagen, Dagmar
,
Fosaa, Anna Maria
in
Commons
,
Comparative analysis
,
Cross cultural studies
2013
An international overview of the extent and type of ecological restoration can offer new perspectives for understanding, planning, and implementation. The Nordic countries, with a great range of natural conditions but historically similar social and political structures, provide an opportunity to compare restoration approaches and efforts across borders. The aim of this study was to explore variation in ecological restoration using the Nordic countries as an example. We used recent national assessments and expert evaluations of ecological restoration. Restoration efforts differed among countries: forest and peatland restoration was most common in Finland, freshwater restoration was most common in Sweden, restoration of natural heathlands and grasslands was most common in Iceland, restoration of natural and semi-cultural heathlands was most common in Norway, and restoration of cultural ecosystems, mainly abandoned agricultural land, was most common in Denmark. Ecological restoration currently does not occur on the Faroe Islands. Economic incentives influence ecological restoration and depend on laws and policies in each country. Our analyses suggest that habitat types determine the methods of ecological restoration, whereas socio-economic drivers are more important for the decisions concerning the timing and location of restoration. To improve the understanding, planning, and implementation of ecological restoration, we advocate increased cooperation and knowledge sharing across disciplines and among countries, both in the Nordic countries and internationally. An obvious advantage of such cooperation is that a wider range of experiences from different habitats and different socio-economic conditions becomes available and thus provides a more solid basis for developing practical solutions for restoration methods and policies.
Journal Article
Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns
by
Hofgaard, Annika
,
Elmendorf, Sarah C.
,
Henry, Gregory H. R.
in
ambient temperature
,
ATES OF AMERICA
,
BIODIVERSITY
2015
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes ( i ) in response to in situ experimental warming, ( ii ) with interannual variability in summer temperature within sites, and ( iii ) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.
Significance Methodological constraints can limit our ability to quantify potential impacts of climate warming. We assessed the consistency of three approaches in estimating warming effects on plant community composition: manipulative warming experiments, repeat sampling under ambient temperature change (monitoring), and space-for-time substitution. The three approaches showed agreement in the direction of change (an increase in the relative abundance of species with a warmer thermal niche), but differed in the magnitude of change estimated. Experimental and monitoring approaches were similar in magnitude, whereas space-for-time comparisons indicated a much stronger response. These results suggest that all three approaches are valid, but experimental warming and long-term monitoring are best suited for forecasting impacts over the coming decades.
Journal Article
The rich sides of mountain summits - a pan-European view on aspect preferences of alpine plants
by
Benito Alonso, José-Luis
,
Unterluggauer, Peter
,
Petey, Martina
in
alpine life zone
,
alpine plants
,
Biodiversity
2016
Aim: In the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan-European scale. Location: Mountain summits in Europe's alpine life zone. Methods: Vascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6-year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed-effects and generalised mixed-effects models, respectively. Results: Temperature sums were higher in east-and south-facing aspects than in the north-facing ones, while the west-facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature. Main conclusions: Thermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate-induced migration processes.
Journal Article
Potential effects of climate change on plant species in the Faroe Islands
by
Sykes, Martin T.
,
Lawesson, Jonas E.
,
Gaard, Magnus
in
Alpine species
,
Altitude
,
Animal, plant and microbial ecology
2004
Aim: To identify the effect of climate change on selected plant species representative of the main vegetation types in the Faroe Islands. Due to a possible weakening of the North Atlantic Current, it is difficult to predict whether the climate in the Faroe Islands will be warmer or colder as a result of global warming. Therefore, two scenarios are proposed. The first scenario assumes an increase in summer and winter temperature of 2 ° C and the second a decrease in summer and winter temperature of 2 ° C. Location: Temperate, low alpine and alpine areas in the northern and central part of the Faroe Islands. Methods: The responses of 12 different plant species in the Faroe Islands were tested against measured soil temperature, expressed as Tmin, Tmax, snow cover and growing degree days (GDD), using generalised linear modelling (GLM). Results: The tolerance to changes in winter soil temperature ($0.3-0.8 \\textdegree C$) was found to be lower than the tolerance to changing summer soil temperature ($0.7-1.0 \\textdegree C$), and in both cases lower than the predicted climate changes. Conclusions: The species most affected by a warming scenario are those that are found with a limited distribution restricted to the uppermost parts of the mountains, especially Salix herbacea, Racomitrium fasciculare, and Bistorta vivipara. For other species, the effect will mainly be a general upward migration. The most vulnerable species are those with a low tolerance, especially Calluna vulgaris, and also Empetrum nigrum, and Nardus stricta. If the climate in the Faroe Islands should become colder, the most vulnerable species are those at low altitudes. A significantly lower temperature would be expected to produce a serious reduction in the extent of Vaccinium myrtillus and Galium saxatilis. Species like Empetrum nigrum, Nardus stricta, and Calluna vulgaris may also be vulnerable. In any case, these species can be expected to migrate downwards.
Journal Article
Warming shortens flowering seasons of tundra plant communities
by
Høye, Toke T.
,
Cooper, Elisabeth J.
,
Panchen, Zoe A.
in
631/158/2165/2457
,
704/158/2165/2457
,
arctic tundra
2019
Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Analysing a global database of >40,000 tundra plant phenological observations monitored for up to 20 years, the authors show that community-level flowering has been contracting in response to recent warming, in contrast to findings from lower latitudes.
Journal Article
Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands
2004
Biodiversity patterns of vascular plant species were studied along altitudinal gradients in the Faroe Islands. Plants were sampled from five different mountains (150-856 m a.s.l.) at 50 m altitudinal intervals. Included in the study were 107 vascular plant species. In order to compare only altitudes with the same number of plots, three different analyses were carried out. One analysis included five mountains from 250 to 750 m a.s.l., one had three mountains from 150 to 750 m a.s.l., and the last one had two mountains from 750 to 850 m a.s.l. The patterns of biodiversity were evaluated on the basis of species richness as the total number of species at each altitudinal interval, as species turnover between altitudes and in relation to the Shannon-Wiener index. Similar patterns were found for species richness in the three analyses, although richness was higher along the whole transect when five mountains were included. For the Shannon-Wiener index, only small differences were found among the three analyses. A maximum was seen at 250 m a.s.l. and again at 500 m a.s.l. both in richness and in the Shannon-Wiener index. Maximum species turnover was found at mid-altitudes. Total vegetation cover followed the same pattern as richness. In addition to climate, the altitudinal variation of biodiversity may be affected by grazing.
Journal Article
BioTIME: A database of biodiversity time series for the Anthropocene
2018
Abstract Motivation The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km 2 (158 cm 2 ) to 100 km 2 (1,000,000,000,000 cm 2 ). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL.
Journal Article
Author Correction: Warming shortens flowering seasons of tundra plant communities
by
Høye, Toke T.
,
Cooper, Elisabeth J.
,
Panchen, Zoe A.
in
631/158/2165/2457
,
704/158/2165/2457
,
Author Correction
2019
In the version of this Article originally published, the following sentence was missing from the Acknowledgements: “This work was supported by the Norwegian Research Council SnoEco project, grant number 230970”. This text has now been added.
Journal Article
Calibration of Ellenberg indicator values for the Faroe Islands
2003
. Elenberg's bio‐indication system for soil moisture (F), soil nitrogen (N) and soil reaction (R) was examined, based on 559 vegetation samples and environmental characteristics (vegetation cover, soil depth, soil moisture, chemical soil properties) from four Faroe islands. The original indicator values from central Europe were used for the calculation of weighted community indicator values of F, N and R. These were regressed with respect to environmental data, applying standard curvilinear regression and generalized linear modelling (GLM) and new predicted values of community indicator values were obtained from the best model. Faroe species optima values of 162 taxa for one or more of the three EUenberg scales were derived from fitting Huisman‐Olff‐Fresco (HOF) models of species abundance with respect to predicted community indicator values and are proposed as new EUenberg species indicator values to be used in the Faroe Islands. F was best correlated with a GLM model containing soil moisture, organic soil fraction, soil depth and total vegetation cover, R with a GLM model containing pH and calcium in % organic soil fraction, N with total phosphorus in % organic soil fraction. The calibrated species indicator scales are much truncated, as compared with the original values, resulting in significantly different overall distributions of the original and new species indicator values. The recalculated community indicator values are much better correlated to environmental measurements. Several species do not have clear optima, but linear or monotone relationships to the examined indicator scales. This probably indicates that the occurrence of some species in the Faroe Islands are either determined by factors other than moisture, pH or soil nutrient status or, given the young age and environmental instability of the islands, are governed by stochastic mechanisms. Extension of Ellenberg indicator values outside central Europe should always be carefully calibrated by means of adequate environmental data and adequate statistical models, such as HOF models, should be applied.
Journal Article
Vegetation transition following drainage in a high-latitude hyper-oceanic ecosystem
by
Simonsen, William
,
Gaard, Magnus
,
Fosaa, Anna Maria
in
anthropogenic activities
,
biodegradation
,
botanical composition
2010
Questions: How does draining affect the composition of vegetation? Are certain functional groups favoured? Can soil parameters explain these differences? Location: Central Faroe Islands, treeless islands in the northern boreal vegetation zone. Since 1987, an area of 21km² at 100–200 m a. s. l. was drained in order to provide water for hydro-electric production. Method: Vegetation and soil of a drained area and a control, undrained neighbouring area of approximately the same size were sampled in 2007. Six sites were sampled in each area. The vegetation was classified with cluster analysis. Results: Four plant communities were defined in the area: Calluna vulgaris–Empetrum nigrum-Vaccinium myrtillus heath, Scirpus cespitosus–Eriophorum angustifolium blanket mire, Carex bigelowii-Racomitrium lanuginosum moss-heath, Narthecium ossifragum-Carex panacea mire. Heath was more extensively distributed within, and was the dominant community of the drained area, whereas mossheath was more extensive in the undrained area.Blanket mire and mire had approximately the same distribution in both areas. For the blanket mire, species composition indicated drier conditions in the drained than in the undrained area. The drained area had higher frequencies of woody species and lichens, grasses had finer roots and available soil phosphate was considerably higher, whereas the undrained area had higher frequencies of grasses and sedges. Conclusion: The dominant plant communities were different in the two areas, which indicated that the blanket mire was drying in the drained area. Higher concentration of soil phosphate in the drained area also indicated increased decomposition of organic soils owing to desiccation.
Journal Article