Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Fournier, Téo"
Sort by:
Extensive impact of low-frequency variants on the phenotypic landscape at population-scale
Genome-wide association studies (GWAS) allow to dissect complex traits and map genetic variants, which often explain relatively little of the heritability. One potential reason is the preponderance of undetected low-frequency variants. To increase their allele frequency and assess their phenotypic impact in a population, we generated a diallel panel of 3025 yeast hybrids, derived from pairwise crosses between natural isolates and examined a large number of traits. Parental versus hybrid regression analysis showed that while most phenotypic variance is explained by additivity, a third is governed by non-additive effects, with complete dominance having a key role. By performing GWAS on the diallel panel, we found that associated variants with low frequency in the initial population are overrepresented and explain a fraction of the phenotypic variance as well as an effect size similar to common variants. Overall, we highlighted the relevance of low-frequency variants on the phenotypic variation.
Reshuffling yeast chromosomes with CRISPR/Cas9
Genome engineering is a powerful approach to study how chromosomal architecture impacts phenotypes. However, quantifying the fitness impact of translocations independently from the confounding effect of base substitutions has so far remained challenging. We report a novel application of the CRISPR/Cas9 technology allowing to generate with high efficiency both uniquely targeted and multiple concomitant reciprocal translocations in the yeast genome. Targeted translocations are constructed by inducing two double-strand breaks on different chromosomes and forcing the trans-chromosomal repair through homologous recombination by chimerical donor DNAs. Multiple translocations are generated from the induction of several DSBs in LTR repeated sequences and promoting repair using endogenous uncut LTR copies as template. All engineered translocations are markerless and scarless. Targeted translocations are produced at base pair resolution and can be sequentially generated one after the other. Multiple translocations result in a large diversity of karyotypes and are associated in many instances with the formation of unanticipated segmental duplications. To test the phenotypic impact of translocations, we first recapitulated in a lab strain the SSU1/ECM34 translocation providing increased sulphite resistance to wine isolates. Surprisingly, the same translocation in a laboratory strain resulted in decreased sulphite resistance. However, adding the repeated sequences that are present in the SSU1 promoter of the resistant wine strain induced sulphite resistance in the lab strain, yet to a lower level than that of the wine isolate, implying that additional polymorphisms also contribute to the phenotype. These findings illustrate the advantage brought by our technique to untangle the phenotypic impacts of structural variations from confounding effects of base substitutions. Secondly, we showed that strains with multiple translocations, even those devoid of unanticipated segmental duplications, display large phenotypic diversity in a wide range of environmental conditions, showing that simply reconfiguring chromosome architecture is sufficient to provide fitness advantages in stressful growth conditions.
Species-wide survey of the expressivity and complexity spectrum of traits in yeast
Assessing the complexity and expressivity of traits at the species level is an essential first step to better dissect the genotype-phenotype relationship. As trait complexity behaves dynamically, the classic dichotomy between monogenic and complex traits is too simplistic. However, no systematic assessment of this complexity spectrum has been carried out on a population scale to date. In this context, we generated a large diallel hybrid panel composed of 190 unique hybrids coming from 20 natural isolates representative of the S . cerevisiae genetic diversity. For each of these hybrids, a large progeny of 160 individuals was obtained, leading to a total of 30,400 offspring individuals. Their mitotic growth was evaluated on 38 conditions inducing various cellular stresses. We developed a classification algorithm to analyze the phenotypic distributions of offspring and assess the trait complexity. We clearly found that traits are mainly complex at the population level. On average, we found that 91.2% of cross/trait combinations exhibit high complexity, while monogenic and oligogenic cases accounted for only 4.1% and 4.7%, respectively. However, the complexity spectrum is very dynamic, trait specific and tightly related to genetic backgrounds. Overall, our study provided greater insight into trait complexity as well as the underlying genetic basis of its spectrum in a natural population.
Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in Saccharomyces cerevisiae
Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species’ phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale. Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising telomere-to-telomere assemblies of 142 strains representing phylogenetic and ecological diversity of the species characterizes its genome structural landscape.
Species-wide survey reveals the various flavors of intraspecific reproductive isolation in yeast
Exploring the origin and extent of reproductive isolation within the same species is valuable to capture early events to the onset of speciation. In multiple genetic models, reproductive isolation was recently observed at the intraspecific scale, indicating that the raw potential for speciation segregates readily within populations, which could be a rule rather than an exception in a broad context. We briefly recapitulate the molecular evidence of intrinsic post-zygotic isolation in major model organisms including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and their close relatives. We then focus on recent advances in yeast and review the genetic basis of post-zygotic isolation within and between multiple members of the Saccharomyces genus, especially in Saccharomyces cerevisiae. We discuss the role of various mechanisms involved in the onset of reproductive isolation including DNA sequence divergence, chromosomal rearrangement, cytonuclear as well as nuclear–nuclear genetic incompatibilities and provide a comparative view along a continuum of genetic differentiation, which encompasses intraspecific populations, recent delineating nascent species as well as closely related sister species in the same subphylum. Recent systematic explorations of large natural yeast populations have been useful for dissecting the mechanistic complexity and multiplicity of their reproductive isolation. Graphical Abstract Figure. Recent systematic explorations of large natural yeast populations have been useful for dissecting the mechanistic complexity and multiplicity of their reproductive isolation.
High-Quality de Novo Genome Assembly of the Dekkera bruxellensis Yeast Using Nanopore MinION Sequencing
Genetic variation in natural populations represents the raw material for phenotypic diversity. Species-wide characterization of genetic variants is crucial to have a deeper insight into the genotype-phenotype relationship. With the advent of new sequencing strategies and more recently the release of long-read sequencing platforms, it is now possible to explore the genetic diversity of any nonmodel organisms, representing a fundamental resource for biological research. In the frame of population genomic surveys, a first step is to obtain the complete sequence and high-quality assembly of a reference genome. Here, we sequenced and assembled a reference genome of the nonconventional Dekkera bruxellensis yeast. While this species is a major cause of wine spoilage, it paradoxically contributes to the specific flavor profile of some Belgium beers. In addition, an extreme karyotype variability is observed across natural isolates, highlighting that D. bruxellensis genome is very dynamic. The whole genome of the D. bruxellensis UMY321 isolate was sequenced using a combination of Nanopore long-read and Illumina short-read sequencing data. We generated the most complete and contiguous de novo assembly of D. bruxellensis to date and obtained a first glimpse into the genomic variability within this species by comparing the sequences of several isolates. This genome sequence is therefore of high value for population genomic surveys and represents a reference to study genome dynamic in this yeast species.
142 telomere-to-telomere assemblies reveal the genome structural landscape in Saccharomyces cerevisiae
As population genomics is transitioning from single reference genomes to pangenomes, major improvements in terms of genome contiguity, phylogenetic sampling, haplotype phasing and structural variant (SV) calling are required. Here, we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising 142 reference-quality genomes from strains of various geographic and ecological origins that faithfully represent the genomic diversity and complexity of the species. The ca. 4,800 independent SVs we identified impact the expression of genes near the breakpoints and contribute to gene repertoire evolution through disruptions, duplications, fusions and horizontal transfers. We discovered frequent cases of complex aneuploidies, preferentially involving large chromosomes that underwent large SVs. We also characterized the evolutionary dynamics of complex genomic regions that classically remain unassembled in short read-based projects, including the 5 Ty families and the 32 individual telomeres. Overall, the ScRAP represents a crucial step towards establishing a high-quality, unified and complete S. cerevisiae pangenome. Competing Interest Statement The authors have declared no competing interest.
High-quality de novo genome assembly of the Dekkera bruxellensis UMY321 yeast isolate using Nanopore MinION sequencing
Genetic variation in natural populations represents the raw material for phenotypic diversity. Species-wide characterization of genetic variants is crucial to have a deeper insight into the genotype-phenotype relationship. With the advent of new sequencing strategies and more recently the release of long-read sequencing platforms, it is now possible to explore the genetic diversity of any non-model organisms, representing a fundamental resource for biological research. In the frame of population genomic surveys, a first step is evidently to obtain the complete sequence and high quality assembly of a reference genome. Here, we completely sequenced and assembled a reference genome of the non-conventional Dekkera bruxellensis yeast. While this species is a major cause of wine spoilage, it paradoxically contributes to the specific flavor profile of some Belgium beers. In addition, an extreme karyotype variability is observed across natural isolates, highlighting that D. bruxellensis genome is very dynamic. The whole genome of the D. bruxellensis UMY321 isolate was sequenced using a combination of Nanopore long-read and Illumina short-read sequencing data. We generated the most complete and contiguous de novo assembly of D. bruxellensis to date and obtained a first glimpse into the genomic variability within this species by comparing the sequences of several isolates. This genome sequence is therefore of high value for population genomic surveys and represents a reference to study genome dynamic in this yeast species.
Reshuffling yeast chromosomes with CRISPR/Cas9
Untangling the phenotypic impact of chromosomal rearrangements from the contribution of the genetic background requires versatile procedures to generate structural variations. We developed a CRISPR/Cas9-based method to efficiently reshuffle the yeast genome in a scarless and markerless manner. Simultaneously generating two double-strand breaks on different chromosomes and forcing the trans-chromosomal repair through homologous recombination by chimerical donor DNAs resulted reciprocal translocations at the base-pair resolution. We made these translocations either irreversible by deleting a small sequence at the junction or reversible to the original chromosomal configuration by inducing the backward translocation. Furthermore, generating multiple DSBs by targeting repeated sequences and using uncut copies of the repeats as template for trans-chromosomal repair resulted in a large diversity of karyotypes comprising multiple rearrangements including balanced and unbalanced variations. We validated the targeted translocations and characterized multiple rearrangements by long-read de novo genome assemblies. To test the phenotypic impact of rearranged chromosomes we first recapitulated in a lab strain the SSU1/ECM34 translocation believed to provide increased sulphite resistance to wine isolates. Surprisingly, this resulted in decreased sulphite resistance in the reference strain showing that the sole translocation is not the driver of increased resistance. Secondly, we found that shuffled strains had severely impaired spore viability and showed large phenotypic diversity in various stressful conditions leading in some instances to a strong fitness advantage, although no coding region was altered by the rearrangements. Therefore our method allows exploring the genotypic space accessible by structural variations and their phenotypic impact independently from the background effect.
Extensive impact of low-frequency variants on the phenotypic landscape at population-scale
Genome-wide association studies (GWAS) allows to dissect the genetic basis of complex traits at the population level. However, despite the extensive number of trait-associated loci found, they often fail to explain a large part of the observed phenotypic variance. One potential source of this discrepancy could be the preponderance of undetected low-frequency genetic variants in natural populations. To increase the allele frequency of those variants and assess their phenotypic effects at the population level, we generated a diallel panel consisting of 3,025 hybrids, derived from pairwise crosses between a subset of natural isolates from a completely sequenced 1,011 Saccharomyces cerevisiae population. We examined each hybrid across a large number of growth traits, resulting in a total of 148,225 cross/trait combinations. Parental versus hybrid regression analysis showed that while most phenotypic variance is explained by additivity, a significant proportion (29%) is governed by non-additive effects. This is confirmed by the fact that a majority of complete dominance is observed in 25% of the traits. By performing GWAS on the diallel panel, we detected 1,723 significantly associated genetic variants, with 16.3% of them being low-frequency variants in the initial population. These variants, which would not be detected using classical GWAS, explain 21% of the phenotypic variance on average. Altogether, our results demonstrate that low-frequency variants should be accounted for as they contribute to a large part of the phenotypic variation observed in a population.