Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
45
result(s) for
"Foy, Carole A"
Sort by:
Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool
2015
Digital PCR (dPCR) is an increasingly popular manifestation of PCR that offers a number of unique advantages when applied to preclinical research, particularly when used to detect rare mutations and in the precise quantification of nucleic acids. As is common with many new research methods, the application of dPCR to potential clinical scenarios is also being increasingly described.
This review addresses some of the factors that need to be considered in the application of dPCR. Compared to real-time quantitative PCR (qPCR), dPCR clearly has the potential to offer more sensitive and considerably more reproducible clinical methods that could lend themselves to diagnostic, prognostic, and predictive tests. But for this to be realized the technology will need to be further developed to reduce cost and simplify application. Concomitantly the preclinical research will need be reported with a comprehensive understanding of the associated errors. dPCR benefits from a far more predictable variance than qPCR but is as susceptible to upstream errors associated with factors like sampling and extraction. dPCR can also suffer systematic bias, particularly leading to underestimation, and internal positive controls are likely to be as important for dPCR as they are for qPCR, especially when reporting the absence of a sequence.
In this review we highlight some of the considerations that may be needed when applying dPCR and discuss sources of error. The factors discussed here aim to assist in the translation of dPCR to diagnostic, predictive, or prognostic applications.
Journal Article
Evaluation of Digital PCR for Absolute RNA Quantification
by
Mason, Deborah J.
,
Foy, Carole A.
,
Huggett, Jim F.
in
Analysis
,
Antigens, Neoplasm - genetics
,
Biology
2013
Gene expression measurements detailing mRNA quantities are widely employed in molecular biology and are increasingly important in diagnostic fields. Reverse transcription (RT), necessary for generating complementary DNA, can be both inefficient and imprecise, but remains a quintessential RNA analysis tool using qPCR. This study developed a Transcriptomic Calibration Material and assessed the RT reaction using digital (d)PCR for RNA measurement. While many studies characterise dPCR capabilities for DNA quantification, less work has been performed investigating similar parameters using RT-dPCR for RNA analysis. RT-dPCR measurement using three, one-step RT-qPCR kits was evaluated using single and multiplex formats when measuring endogenous and synthetic RNAs. The best performing kit was compared to UV quantification and sensitivity and technical reproducibility investigated. Our results demonstrate assay and kit dependent RT-dPCR measurements differed significantly compared to UV quantification. Different values were reported by different kits for each target, despite evaluation of identical samples using the same instrument. RT-dPCR did not display the strong inter-assay agreement previously described when analysing DNA. This study demonstrates that, as with DNA measurement, RT-dPCR is capable of accurate quantification of low copy RNA targets, but the results are both kit and target dependent supporting the need for calibration controls.
Journal Article
Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples
by
Foy, Carole A.
,
Cowen, Simon
,
Huggett, Jim F.
in
Alcohol dehydrogenase
,
Alcohol Dehydrogenase - genetics
,
Alcohols
2013
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.
Journal Article
The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments
by
Mueller, Reinhold D
,
Vandesompele, Jo
,
Nolan, Tania
in
Automation
,
Computers - standards
,
Computers - statistics & numerical data
2013
There is growing interest in digital PCR (dPCR) because technological progress makes it a practical and increasingly affordable technology. dPCR allows the precise quantification of nucleic acids, facilitating the measurement of small percentage differences and quantification of rare variants. dPCR may also be more reproducible and less susceptible to inhibition than quantitative real-time PCR (qPCR). Consequently, dPCR has the potential to have a substantial impact on research as well as diagnostic applications. However, as with qPCR, the ability to perform robust meaningful experiments requires careful design and adequate controls. To assist independent evaluation of experimental data, comprehensive disclosure of all relevant experimental details is required. To facilitate this process we present the Minimum Information for Publication of Quantitative Digital PCR Experiments guidelines. This report addresses known requirements for dPCR that have already been identified during this early stage of its development and commercial implementation. Adoption of these guidelines by the scientific community will help to standardize experimental protocols, maximize efficient utilization of resources, and enhance the impact of this promising new technology.
Journal Article
Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA
2018
Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes.
We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material.
The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA.
These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.
Journal Article
The Dangers of Using Cq to Quantify Nucleic Acid in Biological Samples: A Lesson From COVID-19
by
Braybrook, Julian
,
Vandesompele, Jo
,
Kammel, Martin
in
Belgium
,
Biological properties
,
Biological samples
2022
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA quantities, measured by reverse transcription quantitative PCR (RT-qPCR), have been proposed to stratify clinical risk or determine analytical performance targets. We investigated reproducibility and how setting diagnostic cutoffs altered the clinical sensitivity of coronavirus disease 2019 (COVID-19) testing.
Methods
Quantitative SARS-CoV-2 RNA distributions [quantification cycle (Cq) and copies/mL] from more than 6000 patients from 3 clinical laboratories in United Kingdom, Belgium, and the Republic of Korea were analyzed. Impact of Cq cutoffs on clinical sensitivity was assessed. The June/July 2020 INSTAND external quality assessment scheme SARS-CoV-2 materials were used to estimate laboratory reported copies/mL and to estimate the variation in copies/mL for a given Cq.
Results
When the WHO-suggested Cq cutoff of 25 was applied, the clinical sensitivity dropped to about 16%. Clinical sensitivity also dropped to about 27% when a simulated limit of detection of 106 copies/mL was applied. The interlaboratory variation for a given Cq value was >1000 fold in copies/mL (99% CI).
Conclusion
While RT-qPCR has been instrumental in the response to COVID-19, we recommend Cq (cycle threshold or crossing point) values not be used to set clinical cutoffs or diagnostic performance targets due to poor interlaboratory reproducibility; calibrated copy-based units (used elsewhere in virology) offer more reproducible alternatives. We also report a phenomenon where diagnostic performance may change relative to the effective reproduction number. Our findings indicate that the disparities between patient populations across time are an important consideration when evaluating or deploying diagnostic tests. This is especially relevant to the emergency situation of an evolving pandemic.
Journal Article
Interlaboratory evaluation of high molecular weight DNA extraction methods for long-read sequencing and structural variant analysis
by
Foy, Carole A.
,
Dabad, Marc
,
Morata, Jordi
in
Accuracy
,
Analysis
,
Animal Genetics and Genomics
2025
Background
Long-read sequencing technologies enable resolution of structural variants (SV) and long-range genome assembly, but require high molecular weight (HMW) DNA of both high quantity and quality to produce optimal sequencing results. New DNA extraction methods have been developed but these have not been assessed for use in routine testing. The interlaboratory study described here tested four commonly used methods: Fire Monkey, Nanobind, Puregene and Genomic-tip with a reference cell line containing known chromosomal alterations. Samples were assessed with commonly applied approaches for evaluating DNA purity and integrity as well as a method based on linkage using digital PCR. Sequencing performance was evaluated and the impact of extraction method on structural variant calling investigated.
Results
All methods generally produced samples of acceptable purity although yield varied considerably between laboratories. Library preparation and sequencing were successful for all four methods, with Fire Monkey extracts achieving the highest N50 values, Genomic Tip giving the highest sequencing yields and Nanobind, the highest proportion of ultra-long reads (> 100 kb). The dPCR assay with duplexes at 100 kb and 150 kb distances was predictive of ultra-long reads and provides a more quantitative read-out (% linkage) than pulse-field gel electrophoresis (PFGE) which varied in performance between instruments and gel dyes. Neither PFGE nor dPCR were predictive of the proportion of short reads (< 10 kb). Coverage was a key factor in the success of SV calling, but this was dependent on SV caller. Megabase scale SVs were challenging to analyse with SV callers and required confirmation based on coverage plots and mapping of junction sequences, and the findings of earlier studies were only partially confirmed.
Conclusions
This study highlights some of the challenges of HMW DNA extraction as well as the need for robust sample QC metrics to ensure optimal sequencing yield and read length which in turn influence the success of SV analysis. dPCR approaches for DNA integrity showed potential but require further development. As long-read methods are increasingly applied in routine settings such as clinical testing laboratories, cellular reference samples with well-characterised SVs are recommended as controls for the full long-read sequencing workflow.
Journal Article
Instability of 8E5 calibration standard revealed by digital PCR risks inaccurate quantification of HIV DNA in clinical samples by qPCR
2017
Abtract
Establishing a cure for HIV is hindered by the persistence of latently infected cells which constitute the viral reservoir. Real-time qPCR, used for quantification of this reservoir by measuring HIV DNA, requires external calibration; a common choice of calibrator is the 8E5 cell line, which is assumed to be stable and to contain one HIV provirus per cell. In contrast, digital PCR requires no external calibration and potentially provides ‘absolute’ quantification. We compared the performance of qPCR and dPCR in quantifying HIV DNA in 18 patient samples. HIV DNA was detected in 18 by qPCR and in 15 by dPCR, the difference being due to the smaller sample volume analysed by dPCR. There was good quantitative correlation (R
2
= 0.86) between the techniques but on average dPCR values were only 60% of qPCR values. Surprisingly, investigation revealed that this discrepancy was due to loss of HIV DNA from the 8E5 cell calibrant. 8E5 extracts from two other sources were also shown to have significantly less than one HIV DNA copy per cell and progressive loss of HIV from 8E5 cells during culture was demonstrated. We therefore suggest that the copy number of HIV in 8E5 extracts be established by dPCR prior to use as calibrator.
Journal Article
Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA
2017
Quantitative PCR (qPCR) is an important tool in pathogen detection. However, the use of different qPCR components, calibration materials and DNA extraction methods reduces comparability between laboratories, which can result in false diagnosis and discrepancies in patient care. The wider establishment of a metrological framework for nucleic acid tests could improve the degree of standardisation of pathogen detection and the quantification methods applied in the clinical context. To achieve this, accurate methods need to be developed and implemented as reference measurement procedures, and to facilitate characterisation of suitable certified reference materials. Digital PCR (dPCR) has already been used for pathogen quantification by analysing nucleic acids. Although dPCR has the potential to provide robust and accurate quantification of nucleic acids, further assessment of its actual performance characteristics is needed before it can be implemented in a metrological framework, and to allow adequate estimation of measurement uncertainties. Here, four laboratories demonstrated reproducibility (expanded measurement uncertainties below 15%) of dPCR for quantification of DNA from human cytomegalovirus, with no calibration to a common reference material. Using whole-virus material and extracted DNA, an intermediate precision (coefficients of variation below 25%) between three consecutive experiments was noted. Furthermore, discrepancies in estimated mean DNA copy number concentrations between laboratories were less than twofold, with DNA extraction as the main source of variability. These data demonstrate that dPCR offers a repeatable and reproducible method for quantification of viral DNA, and due to its satisfactory performance should be considered as candidate for reference methods for implementation in a metrological framework.
Journal Article
Multiplexed Digital PCR Reference Gene Measurement for Genomic and Cell-Free DNA Analysis
2025
Precision medicine approaches rely on accurate somatic variant detection, where the DNA input into genomic workflows is a key variable. However, there are no gold standard methods for total DNA quantification. In this study, a pentaplex reference gene panel using digital PCR (dPCR) was developed as a candidate reference method. The multiplex approach was compared between two assay chemistries, applied to healthy donor genomic DNA and plasma cell-free DNA (cfDNA) to measure the ERBB2 (HER2) copy number variation in cancer cell line DNA. The multiplex approach demonstrated robust performance with the two assay chemistries, demonstrating comparable results and a wide dynamic range. Ratios of reference genes were close to the expected 1:1 in healthy samples; however, some small but significant differences (<1.2-fold) were observed in one of the five targets. Expanded relative measurement uncertainty was 12.1–19.8% for healthy gDNA and 9.2–25.2% for cfDNA. The multiplex approach afforded lower measurement uncertainty compared to the use of a single reference for total DNA quantification, which is an advantage for its potential use as a calibration method. It avoided potential biases in the application to CNV quantification of cancer samples, where cancer genome instability may be prominent.
Journal Article