Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Fraedrich, Kirsten"
Sort by:
Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (T RM ); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung T RM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses. While current COVID-19 vaccines provide certain protection, more effective vaccination strategies are still desirable. Here the authors show, using mouse vaccination models, that priming with a systemic mRNA and boosting with an intranasal adenoviral vector vaccine induces comprehensive T cell and mucosal immunity.
Mechanisms of sterilizing immunity provided by an HIV-1 neutralizing antibody against mucosal infection
Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity. Therefore, additional challenge viruses were produced that contain SIV Env and graded doses of a fusion-defective trimer of HIV-1 Env, to which the bnAb, PGT121 can bind without interfering with the SIV Env-based cell entry. After administration of either PGT121 or its mutant deficient in Fc-effector functions, rhesus macaques were intrarectally exposed to these challenge viruses and to those using either HIV-1 Env or SIV Env for entry into the first cells. Both antibodies similarly reduced infection events with the challenge virus using HIV-1 Env by a factor close to 200. Incorporating fusion-defective HIV-1 Env trimers into the particles of the challenge viruses at densities observed in primary virus isolates did not reduce SIV Env-mediated infection events. The results indicate that the sparsity of bnAb binding-sites on HIV-1 virions limits the contribution of Fc-effector functions to provide sterilizing immunity against mucosal viral infection. Hence, harnessing Fc-effector functions for sterilizing immunity against mucosal HIV-1 infection may require strategies to increase the degree of antibody opsonization.
Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Propagation of SARS-CoV-2 in a Closed Cell Culture Device: Potential GMP Compatible Production Platform for Live-Attenuated Vaccine Candidates under BSL-3 Conditions?
Live-attenuated SARS-CoV-2 vaccines present themselves as a promising approach for the induction of broad mucosal immunity. However, for initial safety assessment in clinical trials, virus production requires conditions meeting Good Manufacturing Practice (GMP) standards while maintaining biosafety level 3 (BSL-3) requirements. Since facilities providing the necessary complex ventilation systems to meet both requirements are rare, we here describe a possibility to reproducibly propagate SARS-CoV-2 in the automated, closed cell culture device CliniMACS Prodigy® in a common BSL-3 laboratory. In this proof-of-concept study, we observed an approximately 300-fold amplification of SARS-CoV-2 under serum-free conditions with high lot-to-lot consistency in the infectious titers obtained. With the possibility to increase production capacity to up to 3000 doses per run, this study outlines a potential fast-track approach for the production of live-attenuated vaccine candidates based on highly pathogenic viruses under GMP-like conditions that may contribute to pandemic preparedness.
Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner
There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.
Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2
Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development of novel anti-SARS-CoV-2 drug candidates demands skillful strategies and analysis systems. Promising results have been achieved with first generation direct-acting antivirals targeting the viral polymerase RdRp or the protease 3CLpro. Such recently approved or investigational drugs like remdesivir and GC376 represent a basis for further development and optimization. Here, we establish a multi-readout assay (MRA) system that enables the antiviral assessment and mechanistic characterization of novel test compounds, drug repurposing and combination treatments. Our SARS-CoV-2-specific MRA combines the quantitative measurement of several parameters of virus infection, such as the intracellular production of proteins and genomes, enzymatic activities and virion release, as well as the use of reporter systems. In this regard, the antiviral efficacy of remdesivir and GC376 has been investigated in human Caco-2 cells. The readouts included the use of spike- and double-strand RNA-specific monoclonal antibodies for in-cell fluorescence imaging, a newly generated recombinant SARS-CoV-2 reporter virus d6YFP, the novel 3CLpro-based FRET CFP::YFP and the previously reported FlipGFP reporter assays, as well as viral genome-specific RT-qPCR. The data produced by our MRA confirm the high antiviral potency of these two drugs in vitro. Combined, this MRA approach may be applied for broader analyses of SARS-CoV-2-specific antivirals, including compound screenings and the characterization of selected drug candidates.
Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag
The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.
Characterization of SARS-CoV-2 Escape Mutants to a Pair of Neutralizing Antibodies Targeting the RBD and the NTD
Mutations in the spike protein of SARS-CoV-2 can lead to evasion from neutralizing antibodies and affect the efficacy of passive and active immunization strategies. Immunization of mice harboring an entire set of human immunoglobulin variable region gene segments allowed to identify nine neutralizing monoclonal antibodies, which either belong to a cluster of clonally related RBD or NTD binding antibodies. To better understand the genetic barrier to emergence of SARS-CoV-2 variants resistant to these antibodies, escape mutants were selected in cell culture to one antibody from each cluster and a combination of the two antibodies. Three independently derived escape mutants to the RBD antibody harbored mutations in the RBD at the position T478 or S477. These mutations impaired the binding of the RBD antibodies to the spike protein and conferred resistance in a pseudotype neutralization assay. Although the binding of the NTD cluster antibodies were not affected by the RBD mutations, the RBD mutations also reduced the neutralization efficacy of the NTD cluster antibodies. The mutations found in the escape variants to the NTD antibody conferred resistance to the NTD, but not to the RBD cluster antibodies. A variant resistant to both antibodies was more difficult to select and only emerged after longer passages and higher inoculation volumes. VOC carrying the same mutations as the ones identified in the escape variants were also resistant to neutralization. This study further underlines the rapid emergence of escape mutants to neutralizing monoclonal antibodies in cell culture and indicates the need for thorough investigation of escape mutations to select the most potent combination of monoclonal antibodies for clinical use.