Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,255
result(s) for
"François, Sarah"
Sort by:
Host species drive composition of mosquito virome
2024
Metatranscriptomic data from more than 2,000 mosquitoes of 81 species show that the composition of mosquito viral communities is determined more by host phylogeny than by climate and land-use factors, which will help to inform arbovirus surveillance.
Journal Article
Impact of host age on viral and bacterial communities in a waterbird population
by
Royal Veterinary College (RVC) ; University of London [London]
,
Unité Mixte de Recherche d'Épidémiologie des maladies Animales et zoonotiques (UMR EPIA) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
,
Universiteit van Amsterdam = University of Amsterdam (UvA)
in
631/158/855
,
631/208/514/2254
,
631/326/596/2142
2023
Abstract Wildlife harbour pathogens that can harm human or livestock health and are the source of most emerging infectious diseases. It is rarely considered how changes in wildlife population age-structures or how age-stratified behaviours might alter the level of pathogen detection within a species, or risk of spillover to other species. Micro-organisms that occur in healthy animals can be an important model for understanding and predicting the dynamics of pathogens of greater health concern, which are hard to study in wild populations due to their relative rarity. We therefore used a metagenomic approach to jointly characterise viral and prokaryotic carriage in faeces collected from a healthy wild bird population ( Cygnus olor ; mute swan) that has been subject to long-term study. Using 223 samples from known individuals allowed us to compare differences in prokaryotic and eukaryotic viral carriage between adults and juveniles at an unprecedented level of detail. We discovered and characterised 77 novel virus species, of which 21% belong putatively to bird-infecting families, and described the core prokaryotic microbiome of C. olor . Whilst no difference in microbiota diversity was observed between juveniles and adult individuals, 50% (4/8) of bird-infecting virus families (picornaviruses, astroviruses, adenoviruses and bornaviruses) and 3.4% (9/267) of prokaryotic families (including Helicobacteraceae , Spirochaetaceae and Flavobacteriaceae families) were differentially abundant and/or prevalent between juveniles and adults. This indicates that perturbations that affect population age-structures of wildlife could alter circulation dynamics and spillover risk of microbes, potentially including pathogens.
Journal Article
Characterization of alfalfa virus F, a new member of the genus Marafivirus
by
Roumagnac, Phillipe
,
Filloux, Denis
,
François, Sarah
in
Alfalfa
,
Alfalfa mosaic virus - classification
,
Alfalfa mosaic virus - genetics
2018
Viral infections of alfalfa are widespread in major cultivation areas and their impact on alfalfa production may be underestimated. A new viral species, provisionally named alfalfa virus F (AVF), was identified using a virion-associated nucleic acid (VANA) metagenomics-based approach in alfalfa (Medicago sativa L.) samples collected in Southern France. The nucleotide sequence of the viral genome was determined by de-novo assembly of VANA reads and by 5'/3' RACE with viral RNA extracted from enriched viral particles or with total RNA, respectively. The virus shares the greatest degree of overall sequence identity (~78%) with Medicago sativa marafivirus 1 (MsMV1) recently deduced from alfalfa transcriptomic data. The tentative nucleotide sequence of the AVF coat protein shares ~83% identity with the corresponding region of MsMV1. A sequence search of the predicted single large ORF encoding a polyprotein of 235kDa in the Pfam database resulted in identification of five domains, characteristic of the genus Marafivirus, family Tymoviridae. The AVF genome also contains a conserved \"marafibox\", a 16-nt consensus sequence present in all known marafiviruses. Phylogenetic analysis of the complete nucleotide sequences of AVF and other viruses of the family Tymoviridae grouped AVF in the same cluster with MsMV1. In addition to 5' and 3' terminal extensions, the identity of the virus was confirmed by RT-PCRs with primers derived from VANA-contigs, transmission electron microscopy with virus-infected tissues and transient expression of the viral coat protein gene using a heterologous virus-based vector. Based on the criteria demarcating species in the genus Marafivirus that include overall sequence identity less than 80% and coat protein identity less than 90%, we propose that AVF represents a distinct viral species in the genus Marafivirus, family Tymoviridae.
Journal Article
Characterisation of the Viral Community Associated with the Alfalfa Weevil (Hypera postica) and Its Host Plant, Alfalfa (Medicago sativa)
by
Filloux, Denis
,
Roumagnac, Philippe
,
François, Sarah
in
Agriculture
,
agroecosystem
,
agroecosystems
2021
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
Journal Article
Patterns of Genital Tract Mustelid Gammaherpesvirus 1 (Musghv-1) Reactivation Are Linked to Stressors in European Badgers (Meles Meles)
by
Buesching, Christina D.
,
François, Sarah
,
Macdonald, David W.
in
Adults
,
Animal behavior
,
Asymptomatic
2021
Gammaherpesvirus reactivation can promote diseases or impair reproduction. Understanding reactivation patterns and associated risks of different stressors is therefore important. Nevertheless, outside the laboratory or captive environment, studies on the effects of stress on gammaherpesvirus reactivation in wild mammals are lacking. Here we used Mustelid gammaherpesvirus 1 (MusGHV-1) infection in European badgers (Meles meles) as a host–pathogen wildlife model to study the effects of a variety of demographic, physiological and environmental stressors on virus shedding in the genital tract. We collected 251 genital swabs from 150 free-ranging individuals across three seasons and screened them for the presence of MusGHV-1 DNA using PCR targeting the DNA polymerase gene. We explored possible links between MusGHV-1 DNA presence and seven variables reflecting stressors, using logistic regression analysis. The results reveal different sets of risk factors between juveniles and adults, likely reflecting primary infection and reactivation. In adults, virus shedding was more likely in badgers in poorer body condition and younger than 5 years or older than 7; while in juveniles, virus shedding is more likely in females and individuals in better body condition. However, living in social groups with more cubs was a risk factor for all badgers. We discuss possible explanations for these risk factors and their links to stress in badgers.
Journal Article
Discovery of parvovirus-related sequences in an unexpected broad range of animals
2016
Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the
Parvoviridae
family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.
Journal Article
Infection with a Recently Discovered Gammaherpesvirus Variant in European Badgers, Meles meles, is Associated with Higher Relative Viral Loads in Blood
by
Buesching, Christina D.
,
François, Sarah
,
Macdonald, David W.
in
Amino acids
,
Badgers
,
Biodiversity and Ecology
2022
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant.
Journal Article