Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Francies, Hayley E"
Sort by:
Human primary liver cancer–derived organoid cultures for disease modeling and drug screening
Tumor organoids derived from the most common subtypes of primary liver cancer recapitulate the histologic and molecular features of the tissues of origin, even after long-term culture. These in vitro models, as well as those for colorectal cancer reported in Crespo et al. in a previous issue, are amenable for drug screening and allow the identification of therapeutic approaches with potential for cancer treatment. Human liver cancer research currently lacks in vitro models that can faithfully recapitulate the pathophysiology of the original tumor. We recently described a novel, near-physiological organoid culture system, wherein primary human healthy liver cells form long-term expanding organoids that retain liver tissue function and genetic stability. Here we extend this culture system to the propagation of primary liver cancer (PLC) organoids from three of the most common PLC subtypes: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and combined HCC/CC (CHC) tumors. PLC-derived organoid cultures preserve the histological architecture, gene expression and genomic landscape of the original tumor, allowing for discrimination between different tumor tissues and subtypes, even after long-term expansion in culture in the same medium conditions. Xenograft studies demonstrate that the tumorogenic potential, histological features and metastatic properties of PLC-derived organoids are preserved in vivo . PLC-derived organoids are amenable for biomarker identification and drug-screening testing and led to the identification of the ERK inhibitor SCH772984 as a potential therapeutic agent for primary liver cancer. We thus demonstrate the wide-ranging biomedical utilities of PLC-derived organoid models in furthering the understanding of liver cancer biology and in developing personalized-medicine approaches for the disease.
Pancreatic cancer organoids recapitulate disease and allow personalized drug screening
We report the derivation of 30 patient-derived organoid lines (PDOs) from tumors arising in the pancreas and distal bile duct. PDOs recapitulate tumor histology and contain genetic alterations typical of pancreatic cancer. In vitro testing of a panel of 76 therapeutic agents revealed sensitivities currently not exploited in the clinic, and underscores the importance of personalized approaches for effective cancer treatment. The PRMT5 inhibitor EZP015556, shown to target MTAP (a gene commonly lost in pancreatic cancer)-negative tumors, was validated as such, but also appeared to constitute an effective therapy for a subset of MTAP-positive tumors. Taken together, the work presented here provides a platform to identify novel therapeutics to target pancreatic tumor cells using PDOs.
Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics
Esophageal adenocarcinoma (EAC) incidence is increasing while 5-year survival rates remain less than 15%. A lack of experimental models has hampered progress. We have generated clinically annotated EAC organoid cultures that recapitulate the morphology, genomic, and transcriptomic landscape of the primary tumor including point mutations, copy number alterations, and mutational signatures. Karyotyping of organoid cultures has confirmed polyclonality reflecting the clonal architecture of the primary tumor. Furthermore, subclones underwent clonal selection associated with driver gene status. Medium throughput drug sensitivity testing demonstrates the potential of targeting receptor tyrosine kinases and downstream mediators. EAC organoid cultures provide a pre-clinical tool for studies of clonal evolution and precision therapeutics. Esophageal adenocarcinoma (EAC) has a poor 5-year survival rate and lacks robust preclinical models for use in research. Here, the authors show that newly derived organoids recapitulate the transcriptomic, genetic, and morphological landscape of the primary EAC tumors and provide a platform to test drug sensitivity and study tumor clonality.
A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens
Organoid cell culture methodologies are enabling the generation of cell models from healthy and diseased tissue. Patient-derived cancer organoids that recapitulate the genetic and histopathological diversity of patient tumours are being systematically generated, providing an opportunity to investigate new cancer biology and therapeutic approaches. The use of organoid cultures for many applications, including genetic and chemical perturbation screens, is limited due to the technical demands and cost associated with their handling and propagation. Here we report and benchmark a suspension culture technique for cancer organoids which allows for the expansion of models to tens of millions of cells with increased efficiency in comparison to standard organoid culturing protocols. Using whole-genome DNA and RNA sequencing analyses, as well as medium-throughput drug sensitivity testing and genome-wide CRISPR-Cas9 screening, we demonstrate that cancer organoids grown as a suspension culture are genetically and phenotypically similar to their counterparts grown in standard conditions. This culture technique simplifies organoid cell culture and extends the range of organoid applications, including for routine use in large-scale perturbation screens.
Cancer research needs a better map
TCGA generated more than 2.5 petabytes of data measuring mutations, gene expression and protein levels across 33 cancer types. The aim is to evaluate every gene and drug perturbation in every possible type of cancer in laboratory experiments, and to make the data accessible to researchers and machine-learning experts worldwide. To put some ballpark numbers on this ambition, we think it will be necessary to perturb 20,000 genes and assess the activity of 10,000 drugs and drug candidates in 20,000 cancer models, and measure changes in viability, morphology, gene expression and more. Relevant drugs include vemurafenib (which blocks the cell-signalling enzyme B-RAF to treat melanoma and other cancers), osimertinib (which blocks the cell receptor EGFR to treat certain lung cancers) and, more recently, sotorasib (which blocks a mutant form of the K-Ras cell-signalling protein)7.
Genomics-guided pre-clinical development of cancer therapies
Since the approval of trastuzumab for the treatment of breast cancers more than two decades ago, many clinically effective targeted anti-cancer therapies have been developed. Here we consider the evidence that supports genomics-guided drug development and review the concept of oncogene addiction, including recent findings that inform this therapeutic approach. We consider non-oncogene addiction and how this synthetic-lethal paradigm could expand the range of new therapies, particularly for currently undruggable cancers. We discuss how CRISPR-based genetic screening is enhancing the ability to identify new targets. We conclude by considering opportunities for expanding the scope and refining the use of precision cancer medicines.
What role could organoids play in the personalization of cancer treatment?
Cancer treatments are increasingly being targeted to specific patient populations based on the molecular and genetic features of their tumor, so called precision or personalized cancer medicine. Preclinical cancer models are essential tools for cancer research, but unfortunately our current models often fail to effectively represent patient tumors and can be poorly predictive of clinical responses. In this perspective, we discuss the use of new 3D cell models called 'organoids' as preclinical cancer models in the context of other commonly used models, namely cancer cell lines and patient-derived xenografts. We consider the relative strengths and limitations of each model, and discuss how organoid culture models could facilitate the personalization of cancer medicine.
Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance
Rebecca Fitzgerald and colleagues report the whole-genome sequences of 129 esophageal adenocarcinomas, showing frequent copy number alterations and prevalent mutations in receptor tyrosine kinases concomitant with mitogenic activation. They further characterize mutation signatures and find three distinct molecular subtypes with potential for application to clinical diagnosis and treatment. Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro . However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort ( n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.
Cancer research needs a better map
It is time to move beyond tumour sequencing data to identify vulnerabilities in cancers.
Cancer research needs a better map
It is time to move beyond tumour sequencing data to identify vulnerabilities in cancers.