Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
326
result(s) for
"Francis, Jane M."
Sort by:
Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort
2017
Cardiovascular magnetic resonance (CMR) is the gold standard method for the assessment of cardiac structure and function. Reference ranges permit differentiation between normal and pathological states. To date, this study is the largest to provide CMR specific reference ranges for left ventricular, right ventricular, left atrial and right atrial structure and function derived from truly healthy Caucasian adults aged 45–74.
Five thousand sixty-five UK Biobank participants underwent CMR using steady-state free precession imaging at 1.5 Tesla. Manual analysis was performed for all four cardiac chambers. Participants with non-Caucasian ethnicity, known cardiovascular disease and other conditions known to affect cardiac chamber size and function were excluded. Remaining participants formed the healthy reference cohort; reference ranges were calculated and were stratified by gender and age (45–54, 55–64, 65–74).
After applying exclusion criteria, 804 (16.2%) participants were available for analysis. Left ventricular (LV) volumes were larger in males compared to females for absolute and indexed values. With advancing age, LV volumes were mostly smaller in both sexes. LV ejection fraction was significantly greater in females compared to males (mean ± standard deviation [SD] of 61 ± 5% vs 58 ± 5%) and remained static with age for both genders. In older age groups, LV mass was lower in men, but remained virtually unchanged in women. LV mass was significantly higher in males compared to females (mean ± SD of 53 ± 9 g/m2 vs 42 ± 7 g/m2). Right ventricular (RV) volumes were significantly larger in males compared to females for absolute and indexed values and were smaller with advancing age. RV ejection fraction was higher with increasing age in females only. Left atrial (LA) maximal volume and stroke volume were significantly larger in males compared to females for absolute values but not for indexed values. LA ejection fraction was similar for both sexes. Right atrial (RA) maximal volume was significantly larger in males for both absolute and indexed values, while RA ejection fraction was significantly higher in females.
We describe age- and sex-specific reference ranges for the left ventricle, right ventricle and atria in the largest validated normal Caucasian population.
Journal Article
Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance
by
Karamitsos, Theodoros D
,
Choudhury, Robin P
,
Piechnik, Stefan K
in
Acute Disease
,
Adult
,
Aged
2012
T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR.
We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium.
All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %.
Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis.
Journal Article
Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction
by
Karamitsos, Theodoros D
,
Si, Quang Le
,
Choudhury, Robin P
in
Analysis of Variance
,
Angiology
,
Angioplasty, Balloon, Coronary
2012
Current cardiovascular magnetic resonance (CMR) methods, such as late gadolinium enhancement (LGE) and oedema imaging (T2W) used to depict myocardial ischemia, have limitations. Novel quantitative T1-mapping techniques have the potential to further characterize the components of ischemic injury. In patients with myocardial infarction (MI) we sought to investigate whether state-of the art pre-contrast T1-mapping (1) detects acute myocardial injury, (2) allows for quantification of the severity of damage when compared to standard techniques such as LGE and T2W, and (3) has the ability to predict long term functional recovery.
3T CMR including T2W, T1-mapping and LGE was performed in 41 patients [of these, 78% were ST elevation MI (STEMI)] with acute MI at 12-48 hour after chest pain onset and at 6 months (6M). Patients with STEMI underwent primary PCI prior to CMR. Assessment of acute regional wall motion abnormalities, acute segmental damaged fraction by T2W and LGE and mean segmental T1 values was performed on matching short axis slices. LGE and improvement in regional wall motion at 6M were also obtained.
We found that the variability of T1 measurements was significantly lower compared to T2W and that, while the diagnostic performance of acute T1-mapping for detecting myocardial injury was at least as good as that of T2W-CMR in STEMI patients, it was superior to T2W imaging in NSTEMI. There was a significant relationship between the segmental damaged fraction assessed by either by LGE or T2W, and mean segmental T1 values (P < 0.01). The index of salvaged myocardium derived by acute T1-mapping and 6M LGE was not different to the one derived from T2W (P = 0.88). Furthermore, the likelihood of improvement of segmental function at 6M decreased progressively as acute T1 values increased (P < 0.0004).
In acute MI, pre-contrast T1-mapping allows assessment of the extent of myocardial damage. T1-mapping might become an important complementary technique to LGE and T2W for identification of reversible myocardial injury and prediction of functional recovery in acute MI.
Journal Article
Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis – a clinical study using myocardial T1-mapping and extracellular volume quantification
by
Karamitsos, Theodoros D
,
Matthews, Paul M
,
Moon, James
in
Aged
,
Angiology
,
Biomedical research
2014
Background
Systemic sclerosis (SSc) is characterised by multi-organ tissue fibrosis including the myocardium. Diffuse myocardial fibrosis can be detected non-invasively by T1 and extracellular volume (ECV) quantification, while focal myocardial inflammation and fibrosis may be detected by T2-weighted and late gadolinium enhancement (LGE), respectively, using cardiovascular magnetic resonance (CMR). We hypothesised that multiparametric CMR can detect subclinical myocardial involvement in patients with SSc.
Methods
19 SSc patients (18 female, mean age 55 ± 10 years) and 20 controls (19 female, mean age 56 ± 8 years) without overt cardiovascular disease underwent CMR at 1.5T, including cine, tagging, T1-mapping, T2-weighted, LGE imaging and ECV quantification.
Results
Focal fibrosis on LGE was found in 10 SSc patients (53%) but none of controls. SSc patients also had areas of myocardial oedema on T2-weighted imaging (median 13 vs. 0% in controls). SSc patients had significantly higher native myocardial T1 values (1007 ± 29 vs. 958 ± 20 ms, p < 0.001), larger areas of myocardial involvement by native T1 >990 ms (median 52 vs. 3% in controls) and expansion of ECV (35.4 ± 4.8 vs. 27.6 ± 2.5%, p < 0.001), likely representing a combination of low-grade inflammation and diffuse myocardial fibrosis. Regardless of any regional fibrosis, native T1 and ECV were significantly elevated in SSc and correlated with disease activity and severity. Although biventricular size and global function were preserved, there was impairment in the peak systolic circumferential strain (-16.8 ± 1.6 vs. -18.6 ± 1.0, p < 0.001) and peak diastolic strain rate (83 ± 26 vs. 114 ± 16 s-1, p < 0.001) in SSc, which inversely correlated with diffuse myocardial fibrosis indices.
Conclusions
Cardiac involvement is common in SSc even in the absence of cardiac symptoms, and includes chronic myocardial inflammation as well as focal and diffuse myocardial fibrosis. Myocardial abnormalities detected on CMR were associated with impaired strain parameters, as well as disease activity and severity in SSc patients. CMR may be useful in future in the study of treatments aimed at preventing or reducing adverse myocardial processes in SSc.
Journal Article
Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents
by
Karamitsos, Theodoros D
,
Choudhury, Robin P
,
Piechnik, Stefan K
in
Abnormalities
,
Acute Disease
,
Adult
2014
Background
Acute myocarditis can be diagnosed on cardiovascular magnetic resonance (CMR) using multiple techniques, including late gadolinium enhancement (LGE) imaging, which requires contrast administration. Native T1-mapping is significantly more sensitive than LGE and conventional T2-weighted (T2W) imaging in detecting myocarditis. The aims of this study were to demonstrate how to display the non-ischemic patterns of injury and to quantify myocardial involvement in acute myocarditis without the need for contrast agents, using topographic T1-maps and incremental T1 thresholds.
Methods
We studied 60 patients with suspected acute myocarditis (median 3 days from presentation) and 50 controls using CMR (1.5 T), including: (1) dark-blood T2W imaging; >(2) native T1-mapping (ShMOLLI); (3) LGE. Analysis included: (1) global myocardial T2 signal intensity (SI) ratio compared to skeletal muscle; (2) myocardial T1 times; (3) areas of injury by T2W, T1-mapping and LGE.
Results
Compared to controls, patients had more edema (global myocardial T2 SI ratio 1.71 ± 0.27 vs.1.56 ± 0.15), higher mean myocardial T1 (1011 ± 64 ms vs. 946 ± 23 ms) and more areas of injury as detected by T2W (median 5% vs. 0%), T1 (median 32% vs. 0.7%) and LGE (median 11% vs. 0%); all p < 0.001. A threshold of T1 > 990 ms (sensitivity 90%, specificity 88%) detected significantly larger areas of involvement than T2W and LGE imaging in patients, and additional areas of injury when T2W and LGE were negative. T1-mapping significantly improved the diagnostic confidence in an additional 30% of cases when at least one of the conventional methods (T2W, LGE) failed to identify any areas of abnormality. Using incremental thresholds, T1-mapping can display the non-ischemic patterns of injury typical of myocarditis.
Conclusion
Native T1-mapping can display the typical non-ischemic patterns in acute myocarditis, similar to LGE imaging but without the need for contrast agents. In addition, T1-mapping offers significant incremental diagnostic value, detecting additional areas of myocardial involvement beyond T2W and LGE imaging and identified extra cases when these conventional methods failed to identify abnormalities. In the future, it may be possible to perform gadolinium-free CMR using cine and T1-mapping for tissue characterization and may be particularly useful for patients in whom gadolinium contrast is contraindicated.
Journal Article
Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease
by
Piechnik, Stefan K.
,
Wijesurendra, Rohan S.
,
Mahmod, Masliza
in
Abnormalities
,
Adenosine
,
Adenosine - administration & dosage
2017
Type 2 diabetes mellitus (T2DM) is associated with coronary microvascular dysfunction in the absence of obstructive coronary artery disease (CAD). Cardiovascular magnetic resonance (CMR) T1-mapping at rest and during adenosine stress can assess coronary vascular reactivity. We hypothesised that the non-contrast T1 response to vasodilator stress will be altered in patients with T2DM without CAD compared to controls due to coronary microvascular dysfunction.
Thirty-one patients with T2DM and sixteen matched healthy controls underwent CMR (3 T) for cine, rest and adenosine stress non-contrast T1-mapping (ShMOLLI), first-pass perfusion and late gadolinium enhancement (LGE) imaging. Significant CAD (>50% coronary luminal stenosis) was excluded in all patients by coronary computed tomographic angiography.
All subjects had normal left ventricular (LV) ejection and LV mass index, with no LGE. Myocardial perfusion reserve index (MPRI) was lower in T2DM than in controls (1.60 ± 0.44 vs 2.01 ± 0.42; p = 0.008). There was no difference in rest native T1 values (p = 0.59). During adenosine stress, T1 values increased significantly in both T2DM patients (from 1196 ± 32 ms to 1244 ± 44 ms, p < 0.001) and controls (from 1194 ± 26 ms to 1273 ± 44 ms, p < 0.001). T2DM patients showed blunted relative stress non-contrast T1 response (T2DM: ΔT1 = 4.1 ± 2.9% vs. controls: ΔT1 = 6.6 ± 2.6%, p = 0.007) due to a blunted maximal T1 during adenosine stress (T2DM 1244 ± 44 ms vs. controls 1273 ± 44 ms, p = 0.045).
Patients with well controlled T2DM, even in the absence of arterial hypertension and significant CAD, exhibit blunted maximal non-contrast T1 response during adenosine vasodilatory stress, likely reflecting coronary microvascular dysfunction. Adenosine stress and rest T1 mapping can detect subclinical abnormalities of the coronary microvasculature, without the need for gadolinium contrast agents. CMR may identify early features of the diabetic heart phenotype and subclinical cardiac risk markers in patients with T2DM, providing an opportunity for early therapeutic intervention.
Journal Article
The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study
by
Rodgers, Christopher
,
Levelt, Eylem
,
Ashrafian, Houman
in
Adenosine triphosphate
,
Adenosine Triphosphate - metabolism
,
Aged
2018
Background
Heart failure (HF) is characterized by altered myocardial substrate metabolism which can lead to myocardial triglyceride accumulation (steatosis) and lipotoxicity. However its role in mild HF with preserved ejection fraction (HFpEF) is uncertain. We measured myocardial triglyceride content (MTG) in HFpEF and assessed its relationships with diastolic function and exercise capacity.
Methods
Twenty seven HFpEF (clinical features of HF, left ventricular EF >50%, evidence of mild diastolic dysfunction and evidence of exercise limitation as assessed by cardiopulmonary exercise test) and 14 controls underwent
1
H-cardiovascular magnetic resonance spectroscopy (
1
H-CMRS) to measure MTG (lipid/water, %),
31
P-CMRS to measure myocardial energetics (phosphocreatine-to-adenosine triphosphate - PCr/ATP) and feature-tracking cardiovascular magnetic resonance (CMR) imaging for diastolic strain rate.
Results
When compared to controls, HFpEF had 2.3 fold higher in MTG (1.45 ± 0.25% vs. 0.64 ± 0.16%,
p
= 0.009) and reduced PCr/ATP (1.60 ± 0.09 vs. 2.00 ± 0.10,
p
= 0.005). HFpEF had significantly reduced diastolic strain rate and maximal oxygen consumption (VO
2
max), which both correlated significantly with elevated MTG and reduced PCr/ATP. On multivariate analyses, MTG was independently associated with diastolic strain rate while diastolic strain rate was independently associated with VO
2
max.
Conclusions
Myocardial steatosis is pronounced in mild HFpEF, and is independently associated with impaired diastolic strain rate which is itself related to exercise capacity. Steatosis may adversely affect exercise capacity by indirect effect occurring via impairment in diastolic function. As such, myocardial triglyceride may become a potential therapeutic target to treat the increasing number of patients with HFpEF.
Journal Article
Distinct Circle of Willis anatomical configurations in healthy preterm born adults: a 3D time-of-flight magnetic resonance angiography study
by
Reyes-Aldasoro, Constantino Carlos
,
Lewandowski, Adam J.
,
Huckstep, Odaro J.
in
Adult
,
Adults
,
Anatomical variations
2025
Background
Preterm birth (< 37 weeks’ gestation) alters cerebrovascular development due to the premature transition from a foetal to postnatal circulatory system, with potential implications for future cerebrovascular health. This study aims to explore potential differences in the Circle of Willis (CoW), a key arterial ring that perfuses the brain, of healthy adults born preterm.
Methods
A total of 255 participants (108 preterm, 147 full-term) were included in the analysis. High-resolution three-dimensional Time-of-Flight Magnetic Resonance Angiography (3D TOF MRA) datasets were analysed, measuring vessel diameters and classifying segments into different groups of CoW anatomical variations. Statistical comparisons assessed the prevalence of each variant group between preterm and full-term populations, as well as the relationship between CoW variability, sex, and degree of prematurity.
Results
We identified 164 participants with variant CoW configurations. Unilateral segment hypoplasia (30%) and unilateral segment absence (29%) were the most common variations, with over 50% related to the posterior communicating artery (PComA). However, the incidence of absent segments was lower in preterm adults, who were more likely to exhibit variants associated with complete CoW configurations compared to full-term adults (
p
= 0.025). Preterm males had a higher probability of a group 1 variant (circles with one or more hypoplastic segments only) than the full-term group (
p
= 0.024). In contrast, preterm females showed higher odds of a group 4a variant (circles with one or more accessory segments, without any absent segments) in comparison to their full-term counterparts (
p
= 0.020).
Conclusions
Preterm birth is linked to a distinct vascular phenotype of CoW in adults born preterm, with a higher likelihood of a CoW configuration with hypoplastic segments but a lower likelihood of absent segments. Future work should focus on larger prospective studies and explore the implications of these findings for normal development and cerebrovascular disease. Furthermore, TOF MRA might be a useful adjunct in the neurovascular assessment of preterm-born individuals.
Journal Article
Determinants of left ventricular mass in obesity; a cardiovascular magnetic resonance study
2009
Obesity is linked to increased left ventricular mass, an independent predictor of mortality. As a result of this, understanding the determinants of left ventricular mass in the setting of obesity has both therapeutic and prognostic implications. Using cardiovascular magnetic resonance our goal was to elucidate the main predictors of left ventricular mass in severely obese subjects free of additional cardiovascular risk factors.
38 obese (BMI 37.8 ± 6.9 kg/m2) and 16 normal weight controls subjects, (BMI 21.7 ± 1.8 kg/m2), all without cardiovascular risk factors, underwent cardiovascular magnetic resonance imaging to assess left ventricular mass, left ventricular volumes and visceral fat mass. Left ventricular mass was then compared to serum and anthropometric markers of obesity linked to left ventricular mass, i.e. height, age, blood pressure, total fat mass, visceral fat mass, lean mass, serum leptin and fasting insulin level.
As expected, obesity was associated with significantly increased left ventricular mass (126 ± 27 vs 90 ± 20 g; p < 0.001). Stepwise multiple regression analysis showed that over 75% of the cross sectional variation in left ventricular mass can be explained by lean body mass (β = 0.51, p < 0.001), LV stroke volume (β = 0.31 p = 0.001) and abdominal visceral fat mass (β = 0.20, p = 0.02), all of which showed highly significant independent associations with left ventricular mass (overall R2 = 0.77).
The left ventricular hypertrophic response to obesity in the absence of additional cardiovascular risk factors is mainly attributable to increases in lean body mass, LV stroke volume and visceral fat mass. In view of the well documented link between obesity, left ventricular hypertrophy and mortality, these findings have potentially important prognostic and therapeutic implications for primary and secondary prevention.
Journal Article