Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,485 result(s) for "Francis, Joseph"
Sort by:
Tumor Necrosis Factor - Alpha Is Essential for Angiotensin II-Induced Ventricular Remodeling: Role for Oxidative Stress
The functional crosstalk between angiotensin II (Ang II) and tumor necrosis factor (TNF)-α has been shown to cause adverse left ventricular remodeling and hypertrophy in hypertension. Previous studies from our lab showed that mice lacking TNF-α (TNF-α-/-) have attenuated hypertensive response to Ang II; however, the signaling mechanisms involved are not known. In this study, we investigated the signaling pathways involved in the Ang II and TNF-α interaction. Chronic Ang II infusion (1 μg/kg/min, 14 days) significantly increased cardiac collagen I, collagen III, CTGF and TGF-β mRNA and protein expression in wild-type (WT) mice, whereas these changes were decreased in TNF-α-/- mice. TNF-α-/- mice with Ang II infusion showed reduced myocardial perivascular and interstitial fibrosis compared to WT mice with Ang II infusion. In WT mice, Ang II infusion increased reactive oxygen species formation and the expression of NADPH oxidase subunits, indicating increased oxidative stress, but not in TNF-α-/- mice. In addition, treatment with etanercept (8 mg/kg, every 3 days) for two weeks blunted the Ang II-induced hypertension (133 ± 4 vs 154 ± 3 mmHg, p<0.05) and cardiac hypertrophy (heart weight to body weight ratio, 4.8 ± 0.2 vs 5.6 ± 0.3, p<0.05) in WT mice. Furthermore, Ang II-induced activation of NF-κB, p38 MAPK, and JNK were reduced in both TNF-α-/- mice and mice treated with etanercept. Together, these findings indicate that TNF-α contributes to Ang II-induced hypertension and adverse cardiac remodeling, and that these effects are associated with changes in the oxidative stress dependent MAPK/TGF-β/NF-κB pathway. These results may provide new insight into the mechanisms of Ang II and TNF-α interaction.
A computational approach to understanding the interaction of personality and online product affordances
This study introduces the Personality Assimilation Materiality Analytical (PAMA) framework to explore the interaction between personality traits and material affordances of technological products in online environments. Drawing from assemblage theory and Object-Oriented Ontology (OOO), PAMA reconceptualizes personality as an emergent property influenced by the material characteristics of technological objects. Utilizing the Amazon Review Dataset, the research employs computational methods to analyze the co-evolution of personality traits and product affordances such as cognitive, physical, functional, and sensory aspects. Findings highlight the dynamic interplay between user personalities and material attributes, demonstrating how these factors influence product engagement and performance in digital marketplaces. The study advances personality theory by illustrating the evolving nature of personality through technology interaction and offers practical insights for product design, digital marketplace optimization, and personalized recommendation systems. The results emphasize the need for integrated approaches to understand the mutual shaping of personality and materiality within technological assemblages, paving the way for future research in human-technology interaction. Findings in this research offer insights for product design, digital marketplace optimization, and personalized recommendations by highlighting the interplay between personality traits and material affordances in shaping user engagement.
Oxygen Saturation Imaging Using LED-Based Photoacoustic System
Oxygen saturation imaging has potential in several preclinical and clinical applications. Dual-wavelength LED array-based photoacoustic oxygen saturation imaging can be an affordable solution in this case. For the translation of this technology, there is a need to improve its accuracy and validate it against ground truth methods. We propose a fluence compensated oxygen saturation imaging method, utilizing structural information from the ultrasound image, and prior knowledge of the optical properties of the tissue with a Monte-Carlo based light propagation model for the dual-wavelength LED array configuration. We then validate the proposed method with oximeter measurements in tissue-mimicking phantoms. Further, we demonstrate in vivo imaging on small animal and a human subject. We conclude that the proposed oxygen saturation imaging can be used to image tissue at a depth of 6–8 mm in both preclinical and clinical applications.
Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis
The plant cell wall is a dynamic and complex structure whose functional integrity is constantly being monitored and maintained during development and interactions with the environment. In response to cell wall damage (CWD), putatively compensatory responses, such as lignin production, are initiated. In this context, lignin deposition could reinforce the cell wall to maintain functional integrity. Lignin is important for the plant's response to environmental stress, for reinforcement during secondary cell wall formation, and for long-distance water transport. Here, we identify two stages and several components of a genetic network that regulate CWD-induced lignin production in Arabidopsis (Arabidopsis thaliana). During the early stage, calcium and diphenyleneiodonium-sensitive reactive oxygen species (ROS) production are required to induce a secondary ROS burst and jasmonic acid (JA) accumulation. During the second stage, ROS derived from the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D and lA-isoleucine generated by IASMONIC ACID RESISTANT1, form a negative feedback loop that can repress each other's production. This feedback loop in turn seems to influence lignin accumulation. Our results characterize a genetic network enabling plants to regulate lignin biosynthesis in response to CWD through dynamic interactions between JA and ROS.
Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India
A novel marine actinomycete strain designated ICN19T was isolated from the subtidal sediment of Chinnamuttam coast of Kanyakumari, India and subjected to polyphasic taxonomic analysis. Neighbour-joining tree based on 16S rRNA gene sequences of validly described type strains had revealed the strain ICN19T formed distinct cluster with Streptomyces wuyuanensis CGMCC 4.7042T, Streptomyces tirandamycinicus HNM0039T and Streptomyces spongiicola HNM0071T. Morphological, physiological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The strain possessed ll-diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was identified as MK-9(H8) (70%), MK-9(H6) (20%) and MK-9(H2) (2%), with the major cellular fatty acids (>10%) being anteiso-C15:0, C16:0 and iso-C16:0. The main polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides and three unidentified phospholipids. The dendrogram generated on the basis of MALDI-TOF mass spectra supports the strain differentiated from its neigbours. The genome sequence of strain ICN19T was 9,010,366 bp in size with a total of 7420 protein-coding genes and 98 RNA genes. The genomic G+C content of the novel strain was 71.27 mol%. The DNA–DNA relatedness between strain ICN19T and the reference strains with S. wuyuanensis CGMCC 4.7042T, S. tirandamycinicus HNM0039T and S. spongiicola HNM0071T were 42.8%, 39.5% and 38%, respectively. Based on differences in physiological, biochemical, chemotaxonomic differences and whole-genome characteristics the isolated strain represents a novel species of the genus Streptomyces, for which the name Streptomyces marianii sp. nov. is proposed. Type strain is ICN19T (=MCC 3599T = KCTC 39749T).