Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
72
result(s) for
"Franco, Brunella"
Sort by:
The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer
2020
MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.
Journal Article
Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites
2013
The primary cilium is a microtubule-based organelle that functions in sensory and signal transduction; the authors demonstrate here that autophagic degradation of the oral-facial-digital syndrome 1 (OFD1) protein at centriolar satellites promotes primary cilium biogenesis, and that autophagy modulation might provide a novel means of ciliopathy treatment.
Autophagy's links with ciliogenesis
The primary cilium is a non-motile signalling organelle found in a specific region of the plasma membrane where it functions in both signal transduction and sensing environmental cues such as nutrient levels. Two complementary papers published in this week's issue of
Nature
describe a novel link between ciliogenesis and autophagy. Zaiming Tang
et al
. demonstrate that autophagic degradation of a negative regulator of cilia formation, oral-facial-digital syndrome 1 (OFD1), at centriolar satellites promotes primary cilium biogenesis. Olatz Pampliega
et al
. uncover a reciprocal relationship between ciliogenesis and autophagy and show that the primary cilium is required for activation of starvation-induced autophagy, and that autophagy negatively regulates ciliogenesis. Cross-talk between the primary cilium and the autophagy pathway may further lead to our understanding of human ciliary diseases.
The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies
1
,
2
,
3
. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction
4
. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient
Atg5
or
Atg3
null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet–Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.
Journal Article
Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes
by
Indrieri, Alessia
,
Pizzarelli, Rocco
,
Franco, Brunella
in
Acuity
,
alpha-synuclein
,
Amacrine cells
2020
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Journal Article
The Autophagy-Cilia Axis: An Intricate Relationship
2019
Primary cilia are microtubule-based organelles protruding from the surface of almost all vertebrate cells. This organelle represents the cell’s antenna which acts as a communication hub to transfer extracellular signals into intracellular responses during development and in tissue homeostasis. Recently, it has been shown that loss of cilia negatively regulates autophagy, the main catabolic route of the cell, probably utilizing the autophagic machinery localized at the peri-ciliary compartment. On the other side, autophagy influences ciliogenesis in a context-dependent manner, possibly to ensure that the sensing organelle is properly formed in a feedback loop model. In this review we discuss the recent literature and propose that the autophagic machinery and the ciliary proteins are functionally strictly related to control both autophagy and ciliogenesis. Moreover, we report examples of diseases associated with autophagic defects which cause cilia abnormalities, and propose and discuss the hypothesis that, at least some of the clinical manifestations observed in human diseases associated to ciliary disfunction may be the result of a perturbed autophagy.
Journal Article
CiliaCarta: An integrated and validated compendium of ciliary genes
by
Giles, Rachel H.
,
van Reeuwijk, Jeroen
,
Blacque, Oliver E.
in
Animal models
,
Animals
,
Bayes Theorem
2019
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Journal Article
Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches
by
Indrieri, Alessia
,
Carrella, Sabrina
,
Franco, Brunella
in
Brain-derived neurotrophic factor
,
Diabetes
,
Diabetic retinopathy
2020
Gene therapy is proving to be an effective approach to treat or prevent ocular diseases ensuring a targeted, stable, and regulated introduction of exogenous genetic material with therapeutic action. Retinal diseases can be broadly categorized into two groups, namely monogenic and complex (multifactorial) forms. The high genetic heterogeneity of monogenic forms represents a significant limitation to the application of gene-specific therapeutic strategies for a significant fraction of patients. Therefore, mutation-independent therapeutic strategies, acting on common pathways that underly retinal damage, are gaining interest as complementary/alternative approaches for retinal diseases. This review will provide an overview of mutation-independent strategies that rely on the modulation in the retina of key genes regulating such crucial degenerative pathways. In particular, we will describe how gene-based approaches explore the use of neurotrophic factors, microRNAs, genome editing and optogenetics in order to restore/prolong visual function in both outer and inner retinal diseases. We predict that the exploitation of gene delivery procedures applied to mutation/gene independent approaches may provide the answer to the unmet therapeutic need of a large fraction of patients with genetically heterogeneous and complex retinal diseases.
Journal Article
The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery
2016
John Wallingford and colleagues combine proteomics,
in vivo
imaging and genetic analyses to identify a new ciliopathy-associated protein module, which they call CPLANE. They show that CPLANE proteins, which include Fuzzy, Inturned and Wdpcp, interact with Jbts17 at basal bodies, where they act to recruit a specific subset of intraflagellar transport proteins.
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics,
in vivo
imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients.
Journal Article
α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells
2020
The presence of α-synuclein aggregates in the retina of Parkinson’s disease patients has been associated with vision impairment. In this study we sought to determine the effects of α-synuclein overexpression on the survival and function of dopaminergic amacrine cells (DACs) in the retina. Adult mice were intravitreally injected with an adeno-associated viral (AAV) vector to overexpress human wild-type α-synuclein in the inner retina. Before and after systemic injections of levodopa (L-DOPA), retinal responses and visual acuity-driven behavior were measured by electroretinography (ERG) and a water maze task, respectively. Amacrine cells and ganglion cells were counted at different time points after the injection. α-synuclein overexpression led to an early loss of DACs associated with a decrease of light-adapted ERG responses and visual acuity that could be rescued by systemic injections of L-DOPA. The data show that α-synuclein overexpression affects dopamine neurons in the retina. The approach provides a novel accessible method to model the underlying mechanisms implicated in the pathogenesis of synucleinopathies and for testing novel treatments.
Journal Article
Synthetic long non-coding RNAs SINEUPs rescue defective gene expression in vivo
2016
Non-coding RNAs provide additional regulatory layers to gene expression as well as the potential to being exploited as therapeutic tools. Non-coding RNA-based therapeutic approaches have been attempted in dominant diseases, however their use for treatment of genetic diseases caused by insufficient gene dosage is currently more challenging. SINEUPs are long antisense non-coding RNAs that up-regulate translation in mammalian cells in a gene-specific manner, although, so far evidence of SINEUP efficacy has only been demonstrated in
in vitro
systems. We now show that synthetic SINEUPs effectively and specifically increase protein levels of a gene of interest
in vivo
. We demonstrated that SINEUPs rescue haploinsufficient gene dosage in a medakafish model of a human disorder leading to amelioration of the disease phenotype. Our results demonstrate that SINEUPs act through mechanisms conserved among vertebrates and that SINEUP technology can be successfully applied
in vivo
as a new research and therapeutic tool for gene-specific up-regulation of endogenous functional proteins.
Journal Article
miR‐181a/b downregulation exerts a protective action on mitochondrial disease models
by
Carrella, Sabrina
,
Tammaro, Roberta
,
Flavell, Richard A
in
Animal models
,
Animals
,
Autophagy - genetics
2019
Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR‐181a and miR‐181b (miR‐181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR‐181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR‐181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR‐181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene‐independent therapeutic targets for MDs characterized by neuronal degeneration.
Synopsis
MicroRNAs 181a/b is important for mitochondria homeostasis in the retina. miR‐181a/b inactivation in different animal models of mitochondrial diseases protects neuronal degeneration and ameliorates the disease phenotype in tested models.
miR‐181a/b control mitochondrial biogenesis in the retina and their downregulation enhances mitochondrial turnover through the coordinated activation of mitochondrial biogenesis and mitophagy.
miR‐181a/b inhibition protects neurons from cell death and ameliorates the phenotype of different
in vivo
models of mitochondrial disease, i.e. such as Microphthalmia with Linear Skin Lesions (MLS) and Leber Hereditary Optic Neuropathy (LHON).
miR‐181a/b may represent effective gene‐independent therapeutic targets for genetically heterogeneous mitochondrial diseases characterized by neuronal degeneration.
Graphical Abstract
MicroRNAs 181a/b is important for mitochondria homeostasis in the retina. miR‐181a/b inactivation in different animal models of mitochondrial diseases protects neuronal degeneration and ameliorates the disease phenotype in tested models.
Journal Article