Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
368 result(s) for "Franke, Barbara"
Sort by:
Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders
The substantial individual heterogeneity that characterizes people with mental illness is often ignored by classical case–control research, which relies on group mean comparisons. Here we present a comprehensive, multiscale characterization of the heterogeneity of gray matter volume (GMV) differences in 1,294 cases diagnosed with one of six conditions (attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, depression, obsessive–compulsive disorder and schizophrenia) and 1,465 matched controls. Normative models indicated that person-specific deviations from population expectations for regional GMV were highly heterogeneous, affecting the same area in <7% of people with the same diagnosis. However, these deviations were embedded within common functional circuits and networks in up to 56% of cases. The salience–ventral attention system was implicated transdiagnostically, with other systems selectively involved in depression, bipolar disorder, schizophrenia and attention-deficit/hyperactivity disorder. Phenotypic differences between cases assigned the same diagnosis may thus arise from the heterogeneous localization of specific regional deviations, whereas phenotypic similarities may be attributable to the dysfunction of common functional circuits and networks. A new brain mapping approach tailored to individual people reveals that volume changes in psychiatric illness occur in highly variable locations across individuals, but that these differences often aggregate within common brain systems.
Genetic influences on hub connectivity of the human connectome
Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs. How genes sculpt the complex architecture of the human connectome remains unclear. Here, the authors show that genes preferentially influence the strength of connectivity between functionally valuable, metabolically costly connections between brain network hubs.
Genetic and environmental contribution to the overlap between ADHD and ASD trait dimensions in young adults: a twin study
Traits of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are strongly associated in children and adolescents, largely due to genetic factors. Less is known about the phenotypic and aetiological overlap between ADHD and ASD traits in adults. We studied 6866 individuals aged 20-28 years from the Swedish Study of Young Adult Twins. Inattention (IA) and hyperactivity/impulsivity (HI) were assessed using the WHO Adult ADHD Self-Report Scale-V1.1. Repetitive and restricted behaviours (RRB) and social interaction and communication (SIC) were assessed using the Autism-Tics, ADHD, and other Comorbidities inventory. We used structural equation modelling to decompose covariance between these ADHD and ASD trait dimensions into genetic and shared/non-shared environmental components. At the phenotypic level, IA was similarly correlated with RRB (r = 0.33; 95% Confidence Interval (CI) 0.31-0.36) and with SIC (r = 0.32; 95% CI 0.29-0.34), whereas HI was more strongly associated with RRB (r = 0.38; 95% CI 0.35-0.40) than with SIC (r = 0.24; 95% CI 0.21-0.26). Genetic and non-shared environmental effects accounted for similar proportions of the phenotypic correlations, whereas shared environmental effects were of minimal importance. The highest genetic correlation was between HI and RRB (r = 0.56; 95% 0.46-0.65), and the lowest was between HI and SIC (r = 0.33; 95% CI 0.23-0.43). We found evidence for dimension-specific phenotypic and aetiological overlap between ADHD and ASD traits in adults. Future studies investigating mechanisms underlying comorbidity between ADHD and ASD may benefit from exploring several symptom-dimensions, rather than considering only broad diagnostic categories.
Gut microbiome in ADHD and its relation to neural reward anticipation
Microorganisms in the human intestine (i.e. the gut microbiome) have an increasingly recognized impact on human health, including brain functioning. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with abnormalities in dopamine neurotransmission and deficits in reward processing and its underlying neuro-circuitry including the ventral striatum. The microbiome might contribute to ADHD etiology via the gut-brain axis. In this pilot study, we investigated potential differences in the microbiome between ADHD cases and undiagnosed controls, as well as its relation to neural reward processing. We used 16S rRNA marker gene sequencing (16S) to identify bacterial taxa and their predicted gene functions in 19 ADHD and 77 control participants. Using functional magnetic resonance imaging (fMRI), we interrogated the effect of observed microbiome differences in neural reward responses in a subset of 28 participants, independent of diagnosis. For the first time, we describe gut microbial makeup of adolescents and adults diagnosed with ADHD. We found that the relative abundance of several bacterial taxa differed between cases and controls, albeit marginally significant. A nominal increase in the Bifidobacterium genus was observed in ADHD cases. In a hypothesis-driven approach, we found that the observed increase was linked to significantly enhanced 16S-based predicted bacterial gene functionality encoding cyclohexadienyl dehydratase in cases relative to controls. This enzyme is involved in the synthesis of phenylalanine, a precursor of dopamine. Increased relative abundance of this functionality was significantly associated with decreased ventral striatal fMRI responses during reward anticipation, independent of ADHD diagnosis and age. Our results show increases in gut microbiome predicted function of dopamine precursor synthesis between ADHD cases and controls. This increase in microbiome function relates to decreased neural responses to reward anticipation. Decreased neural reward anticipation constitutes one of the hallmarks of ADHD.
Mapping brain asymmetry in health and disease through the ENIGMA consortium
Left–right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA‐Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population‐level mapping of average asymmetry was achieved, including an intriguing fronto‐occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi‐dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive–compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders. Left–right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Over the last four years, the ENIGMA‐Laterality Working Group has published six studies of grey matter morphological asymmetry in health and disease, based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. Here we review the findings from these six studies.
Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice
Background The impact of the gut microbiota on host physiology and behavior has been relatively well established. Whether changes in microbial composition affect brain structure and function is largely elusive, however. This is important as altered brain structure and function have been implicated in various neurodevelopmental disorders, like attention-deficit/hyperactivity disorder (ADHD). We hypothesized that gut microbiota of persons with and without ADHD, when transplanted into mice, would differentially modify brain function and/or structure. We investigated this by colonizing young, male, germ-free C57BL/6JOlaHsd mice with microbiota from individuals with and without ADHD. We generated and analyzed microbiome data, assessed brain structure and function by magnetic resonance imaging ( MRI ), and studied mouse behavior in a behavioral test battery. Results Principal coordinate analysis showed a clear separation of fecal microbiota of mice colonized with ADHD and control microbiota. With diffusion tensor imaging, we observed a decreased structural integrity of both white and gray matter regions (i.e., internal capsule, hippocampus) in mice that were colonized with ADHD microbiota. We also found significant correlations between white matter integrity and the differentially expressed microbiota. Mice colonized with ADHD microbiota additionally showed decreased resting-state functional MRI-based connectivity between right motor and right visual cortices. These regions, as well as the hippocampus and internal capsule, have previously been reported to be altered in several neurodevelopmental disorders. Furthermore, we also show that mice colonized with ADHD microbiota were more anxious in the open-field test. Conclusions Taken together, we demonstrate that altered microbial composition could be a driver of altered brain structure and function and concomitant changes in the animals’ behavior. These findings may help to understand the mechanisms through which the gut microbiota contributes to the pathobiology of neurodevelopmental disorders. 7eJBsCA8tMGaQzNiv1LdPB Video abstract.
Genetic liability to major psychiatric disorders contributes to multi-faceted quality of life outcomes in children and adults
Psychiatric conditions, known for their hereditary nature, exert significant impacts on various life domains. Leveraging this heritability, we examine the relations between genetic susceptibility to major psychiatric disorders and the multifaceted aspects of quality of life in two population-based cohorts, the Adolescent Brain Cognitive Development (ABCD) study (N = 3909 preadolescent children) and the UK Biobank (N = 269,293 adults). Genetic susceptibility to seven major psychiatric disorders was quantified by polygenic scores derived from extensive genome-wide association studies (N = 21,000–413,000). Pervasive associations were found between genetic risk for all seven major psychiatric disorders investigated and age-relevant real-life quality of life indices, with varied patterns of associations for different life domains. We especially highlight the role of genetic risks for ADHD and major depressive disorders. Our findings emphasize the continuous nature of psychiatric traits, extending their influence on daily life experiences and societal functioning beyond symptomatology and diagnostic classifications.
Molecular genetics of attention-deficit/hyperactivity disorder: an overview
As heritability is high in attention-deficit/hyperactivity disorder (ADHD), genetic factors must play a significant role in the development and course of this disorder. In recent years a large number of studies on different candidate genes for ADHD have been published, most have focused on genes involved in the dopaminergic neurotransmission system, such as DRD4, DRD5, DAT1/SLC6A3, DBH, DDC. Genes associated with the noradrenergic (such as NET1/SLC6A2, ADRA2A, ADRA2C) and serotonergic systems (such as 5-HTT/SLC6A4, HTR1B, HTR2A, TPH2) have also received considerable interest. Additional candidate genes related to neurotransmission and neuronal plasticity that have been studied less intensively include SNAP25, CHRNA4, NMDA, BDNF, NGF, NTF3, NTF4/5, GDNF. This review article provides an overview of these candidate gene studies, and summarizes findings from recently published genome-wide association studies (GWAS). GWAS is a relatively new tool that enables the identification of new ADHD genes in a hypothesis-free manner. Although these latter studies could be improved and need to be replicated they are starting to implicate processes like neuronal migration and cell adhesion and cell division as potentially important in the aetiology of ADHD and have suggested several new directions for future ADHD genetics studies.
Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders
Genomewide association studies have found significant genetic correlations among many neuropsychiatric disorders. In contrast, we know much less about the degree to which structural brain alterations are similar among disorders and, if so, the degree to which such similarities have a genetic etiology. From the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, we acquired standardized mean differences (SMDs) in regional brain volume and cortical thickness between cases and controls. We had data on 41 brain regions for: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), epilepsy, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). These data had been derived from 24,360 patients and 37,425 controls. The SMDs were significantly correlated between SCZ and BD, OCD, MDD, and ASD. MDD was positively correlated with BD and OCD. BD was positively correlated with OCD and negatively correlated with ADHD. These pairwise correlations among disorders were correlated with the corresponding pairwise correlations among disorders derived from genomewide association studies (r = 0.494). Our results show substantial similarities in sMRI phenotypes among neuropsychiatric disorders and suggest that these similarities are accounted for, in part, by corresponding similarities in common genetic variant architectures.
Genetic Overlap Between Schizophrenia and Volumes of Hippocampus, Putamen, and Intracranial Volume Indicates Shared Molecular Genetic Mechanisms
Abstract Schizophrenia (SCZ) is associated with differences in subcortical brain volumes and intracranial volume (ICV). However, little is known about the underlying etiology of these brain alterations. Here, we explored whether brain structure volumes and SCZ share genetic risk factors. Using conditional false discovery rate (FDR) analysis, we integrated genome-wide association study (GWAS) data on SCZ (n = 82315) and GWAS data on 7 subcortical brain volumes and ICV (n = 11840). By conditioning the FDR on overlapping associations, this statistical approach increases power to discover genetic loci. To assess the credibility of our approach, we studied the identified loci in larger GWAS samples on ICV (n = 26577) and hippocampal volume (n = 26814). We observed polygenic overlap between SCZ and volumes of hippocampus, putamen, and ICV. Based on conjunctional FDR < 0.05, we identified 2 loci shared between SCZ and ICV implicating genes FOXO3 (rs10457180) and ITIH4 (rs4687658), 2 loci shared between SCZ and hippocampal volume implicating SLC4A10 (rs4664442) and SPATS2L (rs1653290), and 2 loci shared between SCZ and volume of putamen implicating DCC (rs4632195) and DLG2 (rs11233632). The loci shared between SCZ and hippocampal volume or ICV had not reached significance in the primary GWAS on brain phenotypes. Proving our point of increased power, 2 loci did reach genome-wide significance with ICV (rs10457180) and hippocampal volume (rs4664442) in the larger GWAS. Three of the 6 identified loci are novel for SCZ. Altogether, the findings provide new insights into the relationship between SCZ and brain structure volumes, suggesting that their genetic architectures are not independent.