Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Frazzetta, Giulia"
Sort by:
The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience
by
Brainard, David H.
,
Aguirre, Geoffrey K.
,
Frazzetta, Giulia
in
Biological Sciences
,
Brain
,
Brightening
2017
The photopigment melanopsin supports reflexive visual functions in people, such as pupil constriction and circadian photoentrainment. What contribution melanopsin makes to conscious visual perception is less studied. We devised a stimulus that targeted melanopsin separately from the cones using pulsed (3-s) spectral modulations around a photopic background. Pupillometry confirmed that the melanopsin stimulus evokes a response different from that produced by cone stimulation. In each of four subjects, a functional MRI response in area V1 was found. This response scaled with melanopic contrast and was not easily explained by imprecision in the silencing of the cones. Twenty additional subjects then observed melanopsin pulses and provided a structured rating of the perceptual experience. Melanopsin stimulation was described as an unpleasant, blurry, minimal brightening that quickly faded. We conclude that isolated stimulation of melanopsin is likely associated with a response within the cortical visual pathway and with an evoked conscious percept.
Journal Article
Persistent horizontal and vertical, MR-induced nystagmus in resting state Human Connectome Project data
2022
Strong magnetic fields from magnetic resonance (MR) scanners induce a Lorentz force that contributes to vertigo and persistent nystagmus. Prior studies have reported a predominantly horizontal direction for healthy subjects in a 7 Tesla (T) MR scanner, with slow phase velocity (SPV) dependent on head orientation. Less is known about vestibular signal behavior for subjects in a weaker, 3T magnetic field, the standard strength used in the Human Connectome Project (HCP). The purpose of this study is to characterize the form and magnitude of nystagmus induced at 3T.
Forty-two subjects were studied after being introduced head-first, supine into a Siemens Prisma 3T scanner. Eye movements were recorded in four separate acquisitions over 20 min. A biometric eye model was fitted to the recordings to derive rotational eye position and then SPV. An anatomical template of the semi-circular canals was fitted to the T2 anatomical image from each subject, and used to derive the angle of the B0 magnetic field with respect to the vestibular apparatus.
Recordings from 37 subjects yielded valid measures of eye movements. The population-mean SPV ± SD for the horizontal component was -1.38 ± 1.27 deg/sec, and vertical component was -0.93 ± 1.44 deg/sec, corresponding to drift movement in the rightward and downward direction. Although there was substantial inter-subject variability, persistent nystagmus was present in half of subjects with no significant adaptation over the 20 min scanning period. The amplitude of vertical drift was correlated with the roll angle of the vestibular system, with a non-zero vertical SPV present at a 0 degree roll.
Non-habituating vestibular signals of varying amplitude are present in resting state data collected at 3T.
Journal Article
Human entorhinal cortex represents visual space using a boundary-anchored grid
by
Frazzetta, Giulia
,
Julian, Joshua B
,
Keinath, Alexandra T
in
Cortex (entorhinal)
,
Functional magnetic resonance imaging
,
Modulation
2018
When participants performed a visual search task, functional MRI responses in entorhinal cortex exhibited a sixfold periodic modulation by gaze-movement direction. The orientation of this modulation was determined by the shape and orientation of the bounded search space. These results indicate that human entorhinal cortex represents visual space using a boundary-anchored grid, analogous to that used by rodents to represent navigable space.
Journal Article
Persistent horizontal and vertical, MR-induced nystagmus in resting state Human Connectome Project data
2022
Strong magnetic fields from magnetic resonance (MR) scanners induce a Lorentz force that contributes to vertigo and persistent nystagmus. Prior studies have reported a predominantly horizontal direction for healthy subjects in a 7 Tesla (T) MR scanner, with slow phase velocity (SPV) dependent on head orientation. Less is known about vestibular signal behavior for subjects in a weaker, 3T magnetic field, the standard strength used in the Human Connectome Project (HCP). The purpose of this study is to characterize the form and magnitude of nystagmus induced at 3T.
Forty-two subjects were studied after being introduced head-first, supine into a Siemens Prisma 3T scanner. Eye movements were recorded in four separate acquisitions over 20 minutes. A biometric eye model was fit to the recordings to derive rotational eye position and then SPV. An anatomical template of the semi-circular canals was fit to the T2 anatomical image from each subject, and used to derive the angle of the B0 magnetic field with respect to the vestibular apparatus.
Recordings from 37 subjects yielded valid measures of eye movements. The population-mean SPV ± SD for the horizontal component was −1.38 ± 1.27 deg/sec, and vertical component was −0.93 ± 1.44 deg/sec, corresponding to drift movement in the rightward and downward direction. Although there was substantial inter-subject variability, persistent nystagmus was present in half of subjects with no significant adaptation over the 20 minute scanning period. The amplitude of vertical drift was correlated with the roll angle of the vestibular system, with a non-zero vertical SPV present at a 0 degree roll.
Non-habituating vestibular signals of varying amplitude are present in resting state data collected at 3T.
The Human Visual Cortex Response To Melanopsin-Directed Stimulation Is Accompanied By A Distinct Perceptual Experience
by
Frazzetta, Giulia
,
Spitschan, Manuel
,
Bock, Andrew
in
Circadian rhythms
,
Cones
,
Functional magnetic resonance imaging
2017
The photopigment melanopsin supports reflexive visual functions in people, such as pupil constriction and circadian photoentrainment. What contribution melanopsin makes to conscious visual perception is less studied. We devised a stimulus that targeted melanopsin separately from the cones using pulsed (3 s) spectral modulations around a photopic background. Pupillometry confirmed that the melanopsin stimulus drives a retinal mechanism distinct from luminance. In each of four subjects, a functional MRI response in area V1 was found. This response scaled with melanopic contrast and was not easily explained by imprecision in the silencing of the cones. Twenty additional subjects then observed melanopsin pulses and provided a structured rating of the perceptual experience. Melanopsin stimulation was described as an unpleasant, blurry, minimal brightening that quickly faded. We conclude that isolated stimulation of melanopsin is likely associated with a response within the cortical visual pathway and with an evoked conscious percept.