Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Freeman, Burgess B."
Sort by:
Orthotopic patient-derived xenografts of paediatric solid tumours
A protocol producing orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy demonstrates proof of principle for using these tumours for basic and translational research on paediatric solid tumours. Xenograft archive Preclinical models of paediatric solid tumours that could help identify predictive biomarkers of a patient's sensitivity to therapy have been lacking. Over five years, the authors have developed an open access collection of orthotopic xenografts of 12 types of paediatric tumour. Genomic and epigenetic characterization reveals that xenografts retain characteristics of the tumour of origin. A high-throughput drug screen provides a resource for the community to identify potentially efficacious drug combinations. Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages 1 . Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30% 2 . To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient’s tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and vincristine can lead to complete response in multiple rhabdomyosarcoma orthotopic patient-derived xenografts tumours in vivo .
Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy
A preclinical therapy to treat neurodegeneration is developed that selectively targets the AF-2 domain of the androgen receptor while sparing other functions of this receptor. Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.
The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma
Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta ( TOP2B ), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity—often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children. CX-5461 recently progressed through phase I clinical trial as a first-inhuman inhibitor of RNA-POL I. Here, the authors demonstrate that CX-5461 synergizes with topoisomerase I inhibitors to inhibit neuroblastoma cells and that its primary target in this disease is topoisomerase II beta and not RNA-POL I.
Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research. Patient-derived xenografts provide a resource for basic and translational cancer research. Here, the authors generate multiple pediatric high-grade glioma xenografts, use omics technologies to show that they are representative of primary tumours and use them to assess therapeutic response.
Vitamin D levels do not cause vitamin-drug interactions with dexamethasone or dasatinib in mice
Vitamin D 3 (VD 3 ) induces intestinal CYP3A that metabolizes orally administered anti-leukemic chemotherapeutic substrates dexamethasone (DEX) and dasatinib potentially causing a vitamin-drug interaction. To determine the impact of VD 3 status on systemic exposure and efficacy of these chemotherapeutic agents, we used VD 3 sufficient and deficient mice and performed pharmacokinetic and anti-leukemic efficacy studies. Female C57BL/6J and hCYP3A4 transgenic VD 3 deficient mice had significantly lower duodenal (but not hepatic) mouse Cyp3a11 and hCYP3A4 expression compared to VD 3 sufficient mice, while duodenal expression of Mdr1a, Bcrp and Mrp4 were significantly higher in deficient mice. When the effect of VD 3 status on DEX systemic exposure was compared following a discontinuous oral DEX regimen, similar to that used to treat pediatric acute lymphoblastic leukemia patients, male VD 3 deficient mice had significantly higher mean plasma DEX levels (31.7 nM) compared to sufficient mice (12.43 nM) at days 3.5 but not at any later timepoints. Following a single oral gavage of DEX, there was a statistically, but not practically, significant decrease in DEX systemic exposure in VD 3 deficient vs. sufficient mice. While VD 3 status had no effect on oral dasatinib’s area under the plasma drug concentration-time curve, VD 3 deficient male mice had significantly higher dasatinib plasma levels at t = 0.25 hr. Dexamethasone was unable to reverse the poorer survival of VD 3 sufficient vs. deficient mice to BCR-ABL leukemia. In conclusion, although VD 3 levels significantly altered intestinal mouse Cyp3a in female mice, DEX plasma exposure was only transiently different for orally administered DEX and dasatinib in male mice. Likewise, the small effect size of VD 3 deficiency on single oral dose DEX clearance suggests that the clinical significance of VD 3 levels on DEX systemic exposure are likely to be limited.
RBM39 degrader invigorates innate immunity to eradicate neuroblastoma despite cancer cell plasticity
The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic and mesenchymal, which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown, and how to eradicate neuroblastoma regardless of its cell state is a clinical challenge. To better understand the cellular plasticity of neuroblastoma in chemoresistance, we define the transcriptomic and epigenetic map of adrenergic and mesenchymal types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We show that cancer cells not only undergo a bidirectional switch between adrenergic and mesenchymal states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. These cell state alterations are coupled with epigenetic reprogramming and dependency switching of cell state–specific transcription factors, epigenetic modifiers, and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances the anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states. Cell state plasticity of neuroblastoma cells is linked to therapy resistance. Here, the authors develop a transcriptomic and epigenetic map of indisulam (RBM39 degrader) resistant neuroblastoma, demonstrating bidirectional cell state switching accompanied by increased NK cell activity, which they therapeutically enhance by the addition of an anti-GD2 antibody.
Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial
(+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18–55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0–∞) of 13 000 μg × h/L (median AUC0–∞ 24 283 [IQR 16 135–31 311] μg × h/L, median terminal half-life 17·4 h [IQR 16·1–24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6–1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0–2·5) and 6·47 h (95% CI 5·88–7·18) for 150 mg, and 4·1 (3·7–4·4) and 3·56 h (3·29–3·88) for 600 mg. The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.
Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling
Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are pairedwith disruption of ecto-5′-nucleotidase–dependent adenosine production or A₁–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.
Group 3 medulloblastoma transcriptional networks collapse under domain specific EP300/CBP inhibition
Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB. The differential effects of targeting individual domains of multidomain enzymatic proteins are generally poorly understood. Here, the authors demonstrate lineage-specific sensitivities to domain-specific inhibition of EP300/CBP proteins across cancer and link these effects in group 3 medulloblastoma to control of a transcriptional dependency network.