Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Friberg, Hanna"
Sort by:
Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere
The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although overall the difference in OTU richness was large between the two areas studied.
Optimizing Plant Disease Management in Agricultural Ecosystems Through Rational In-Crop Diversification
Biodiversity plays multifaceted roles in societal development and ecological sustainability. In agricultural ecosystems, using biodiversity to mitigate plant diseases has received renewed attention in recent years but our knowledge of the best ways of using biodiversity to control plant diseases is still incomplete. In term of in-crop diversification, it is not clear how genetic diversity per se in host populations interacts with identifiable resistance and other functional traits of component genotypes to mitigate disease epidemics and what is the best way of structuring mixture populations. In this study, we created a series of host populations by mixing different numbers of potato varieties showing different late blight resistance levels in different proportions. The amount of naturally occurring late blight disease in the mixture populations was recorded weekly during the potato growing seasons. The percentage of disease reduction (PDR) in the mixture populations was calculated by comparing their observed late blight levels relative to that expected when they were planted in pure stands. We found that PDR in the mixtures increased as the number of varieties and the difference in host resistance (DHR) between the component varieties increased. However, the level of host resistance in the potato varieties had little impact on PDR. In mixtures involving two varieties, the optimum proportion of component varieties for the best PDR depended on their DHR, with an increasing skewness to one of the component varieties as the DHR between the component varieties increased. These results indicate that mixing crop varieties can significantly reduce disease epidemics in the field. To achieve the best disease mitigation, growers should include as many varieties as possible in mixtures or, if only two component mixtures are possible, increase DHR among the component varieties.
Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)
Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea.
The Potential of Intercropping for Multifunctional Crop Protection in Oilseed Rape (Brassica napus L.)
Oilseed rape (OSR; Brassica napus ) is a globally important crop which is increasingly under pressure from pests, pathogens and weeds. We investigated the potential of achieving multifunctional crop protection benefits by intercropping oilseed rape with legumes. A field experiment was conducted in which winter oilseed rape was intercropped with the annual frost sensitive legumes berseem clover ( Trifolium alexandrinum ) or spring faba bean ( Vicia faba ), or with the winter grain legumes winter faba bean or winter peas ( Pisum sativum ). We tracked damage to winter oilseed rape by autumn and spring pests (slugs and insects), pathogens, weed biomass, as well as oilseed rape and intercrop yield in each treatment. Intercropping treatments resulted in pest damage that was equivalent or lower than in oilseed rape alone. Follow up field and lab assessments for the frost sensitive legume intercrops provided evidence for a reduction in autumn pest damage to OSR. Each legume intercrop had its own benefits and drawbacks in relation to pest, pathogen and weed suppression, suggesting that the plant species selected for intercropping with oilseed rape should be based on the pests, pathogens and weeds of greatest concern locally to achieve relevant multifunctional benefits. Our study provides a framework for further experiments in which the multifunctional effects of intercropping on pests, pathogens and weeds can be quantified.
Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant
Plant-induced germination of Plasmodiophora brassicae resting spores was studied in a laboratory experiment. Spore reaction was analysed in nutrient solution with exudates from growing roots of different plant species – one host plant (Brassica rapa var. pekinensis) and four non-host plants (Lolium perenne, Allium porrum, Secale cereale and Trifolium pratense) – and in controls with distilled water and nutrient solution. It was found that root exudates from L. perenne stimulated spore germination more than exudates from the other plants, including those from the host plant. The effect could not be explained by differences in the nutritional composition of the solutions due to differential uptake of the plant species, or by differences in root activity, measured as exudation of soluble sugars. This is the first time such a separation of factors has been done in analysing the influence of plants on P. brassicae germination. Although stimulation of P. brassicae resting spore germination is not restricted to the presence of host plants, it seems to vary depending on the plant species.
When is it biological control? A framework of definitions, mechanisms, and classifications
Biological control , or biocontrol , is the exploitation of living agents (incl. viruses) to combat pestilential organisms (incl. pathogens, pests, and weeds) for diverse purposes to provide human benefits. Thus, during the last century the practices and concepts involved have evolved in separate streams associated with distinct scientific and taxonomic disciplines. In parallel developments, there have been increasing references to biological control in industrial contexts and legislation, resulting in conceptual and terminological disintegration. The aim of this paper is to provide a global conceptual and terminological platform that facilitates future development of the field. We review use of previously suggested terms in key fields (e.g., phytopathology, entomology, and weed science), eliminate redundant terminology, identify three principles that should underpin the concept, and then present a new framework for biological control, rooted in seminal publications. The three principles establish that (1) only living agents can mediate biological control, (2) biological control always targets a pest, directly or indirectly, and (3) all biocontrol methods can be classified in four main categories depending on whether resident agents are utilized, with or without targeted human intervention ( conservation biological control and natural biological control , respectively) or agents are added for permanent or temporary establishment ( classical biological control and augmentative biological control , respectively). Correct identification of what is, and is not, biological control can help efforts to understand and optimize biological pest control for human and environmental benefits. The new conceptual framework may contribute to more uniform and appropriate regulatory approaches to biological control, and more efficient authorization and application of biocontrol products.
Preceding crop and tillage system affect winter survival of wheat and the fungal communities on young wheat roots and in soil
ABSTRACT Agricultural practices like tillage and cropping sequence have profound influence on soil-living and plant-associated fungi, and thereby on plant growth. In a field experiment, we studied the effects of preceding crop and tillage on fungal communities in the soil and on young winter wheat roots in relation to plant winter survival and grain yield. We hypothesized that plant performance and fungal communities (described by amplicon sequencing) differ depending on tillage system and preceding crop; that the effect of preceding crop differs depending on tillage system, and that differences in fungal communities are reflected in plant performance. In line with our hypotheses, effects of preceding crop on plant growth and fungal communities on plant roots and in soil were more pronounced under non-inversion tillage than under inversion tillage (ploughing). Fungal communities on plant roots in treatments with low winter survival were different from those with better survival. In soil, several fungal OTUs (operational taxonomic units) differed significantly between tillage systems. OTUs representing putative plant pathogens were either more abundant (Parastagonospora sp._27) or less abundant (Fusarium culmorum/graminearum_5) after non-inversion tillage. Our findings highlight the influence of cultural practices on fungal communities and thereby on plant health and yield. Agricultural practices like tillage and the cropping sequence influence soil fungal communities and thereby crop health and performance.
Lateral episiotomy or no episiotomy in vacuum assisted delivery in nulliparous women (EVA): multicentre, open label, randomised controlled trial
AbstractObjectiveTo assess the effect of lateral episiotomy, compared with no episiotomy, on obstetric anal sphincter injury in nulliparous women requiring vacuum extraction.DesignA multicentre, open label, randomised controlled trial.SettingEight hospitals in Sweden, 2017-23.Participants717 nulliparous women with a single live fetus of 34 gestational weeks or more, requiring vacuum extraction were randomly assigned (1:1) to lateral episiotomy or no episiotomy using sealed opaque envelopes. Randomisation was stratified by study site.InterventionA standardised lateral episiotomy was performed during the vacuum extraction, at crowning of the fetal head, starting 1-3 cm from the posterior fourchette, at a 60° (45-80°) angle from the midline, and 4 cm (3-5 cm) long. The comparison was no episiotomy unless considered indispensable.Main outcome measuresThe primary outcome of the episiotomy in vacuum assisted delivery (EVA) trial was obstetric anal sphincter injury, clinically diagnosed by combined visual inspection and digital rectal and vaginal examination. The primary analysis used a modified intention-to-treat population that included all consenting women with attempted or successful vacuum extraction. As a result of an interim analysis at significance level P<0.01, the primary endpoint was tested at 4% significance level with accompanying 96% confidence interval (CI).ResultsFrom 1 July 2017 to 15 February 2023, 717 women were randomly assigned: 354 (49%) to lateral episiotomy and 363 (51%) to no episiotomy. Before vacuum extraction attempt, one woman withdrew consent and 14 had a spontaneous birth, leaving 702 for the primary analysis. In the intervention group, 21 (6%) of 344 women sustained obstetric anal sphincter injury, compared with 47 (13%) of 358 women in the comparison group (P=0.002). The risk difference was −7.0% (96% CI −11.7% to −2.5%). The risk ratio adjusted for site was 0.47 (96% CI 0.23 to 0.97) and unadjusted risk ratio was 0.46 (0.28 to 0.78). No significant differences were noted between groups in postpartum pain, blood loss, neonatal outcomes, or total adverse events, but the intervention group had more wound infections and dehiscence.ConclusionsLateral episiotomy can be recommended for nulliparous women requiring vacuum extraction to significantly reduce the risk of obstetric anal sphincter injury.Trial registrationClinicalTrials.gov NCT02643108.