Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
70 result(s) for "Friedrich, Mike"
Sort by:
The Inhumans. Beware the Inhumans
\"From Stan Lee, Jack Kirby, Roy Thomas and Neal Adams--the titans of the Marvel Age of Comics--come the Inhumans! For the first time, the stories that defined these regal outcasts are brought together in one collection. From rare exploits and appearances in Fantastic Four to their first solo series in Amazing Adventures, the adventures of Black Bolt, Medusa, Karnak, Gorgon, Crystal and loveable Lockjaw are here. Their quest for peace will be threatened not just be a world that fears them, but by Black Bolt's own brother, Maximus the Mad, and his evil cohorts. The Inhumans is a family epic full of intrigue, as only comics' greatest creative talents could craft it--in the mighty Marvel manner!\"--Back cover.
Thrombopoiesis is spatially regulated by the bone marrow vasculature
In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts. Megakaryocyte maturation is thought to occur as the cells migrate from a vessel-distant (endosteal) niche to the vessel within the bone. Here, the authors show that megakaryocytes represent largely sessile cells in close contact with the vasculature and homogeneously distributed in the bone marrow.
A vascularized breast cancer spheroid platform for the ranked evaluation of tumor microenvironment-targeted drugs by light sheet fluorescence microscopy
Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform’s utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform’s output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs. Assessing tumour microenvironment-targeted drug candidates remains challenging. Here, the authors develop a comprehensive screening platform that allows for monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumour spheroids.
Reducing dust effects on photovoltaic panels by hydrophobic coating
This work aims at developing reliable solar technologies for regions characterized by hot climate and with high dust density, which are considered as significant constraints to the development of high-performance photovoltaic systems in the Middle East and North Africa (MENA) regions. After reviewing actual technologies to solve these issues in MENA region, where water is considered a precious resource, a proposal to apply a nanocoating on photovoltaic panels in a simple and cost-effective way is examined. Experimentations realized under control of optical and electrical benches revealed a considerable gain in light transmission and open circuit voltage, respectively. A thermoelectric analysis demonstrated that nanocoated photovoltaic (PV) modules are running cooler than untreated ones. This behavior is due to hot spot caused by shading effects of dusts in case of uncoated PV panels. The tested hydrophobic coating layer reduces these issues and solves the problems of dust and electrical losses.
Platelet‐derived lipids promote insulin secretion of pancreatic β cells
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet‐derived lipid classes to promote insulin secretion and identified 20‐Hydroxyeicosatetraenoic acid (20‐HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet‐derived 20‐HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals. Synopsis Platelet exhibit hyperactivity during hyperglycemia in diabetic patients. In this study, an unexpected role for platelets in the regulation of insulin secretion from pancreatic β cells was identified. Platelet function was regulated by glucose and β cell‐derived factor/s. A fraction of platelets preferentially localized to the vasculature of pancreatic islets. Platelets released lipid‐based factors such as 20‐Hydroxyeicosatetraenoic acid (20‐HETE) to stimulate insulin secretion. The impact of platelets on pancreatic β cells declined with age. Graphical Abstract Platelet exhibit hyperactivity during hyperglycemia in diabetic patients. In this study, an unexpected role for platelets in the regulation of insulin secretion from pancreatic β cells was identified.
Image-based modeling of vascular organization to evaluate anti-angiogenic therapy
In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.
Unraveling the hidden temporal range of fast β2-adrenergic receptor mobility by time-resolved fluorescence
G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β 2 -adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm²/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbrück model. The mobility of the β2-adrenergic receptor, from the nanosecond to the second range, is revealed by combining several fluorescent spectroscopy techniques. These data also show a previously hidden mobility of this GPCR.
Impaired Axonal Transport in Motor Neurons Correlates with Clinical Prion Disease
Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still elusive. There is no evidence of both the functional axonal impairments in vivo and their connection with prion disease. We studied the functional axonal impairments in motor neurons at the onset of clinical prion disease using the combination of tracing as a functional assay for axonal transport with immunohistochemistry experiments. Well-established and novel confocal and ultramicroscopy techniques were used to image and quantify labeled neurons. Despite profound differences in the incubation times, 30% to 45% of neurons in the red nucleus of different mouse lines showed axonal transport impairments at the disease onset bilaterally after intracerebral prion inoculation and unilaterally -- after inoculation into the right sciatic nerve. Up to 94% of motor cortex neurons also demonstrated transport defects upon analysis by alternative imaging methods. Our data connect axonal transport impairments with disease symptoms for different prion strains and inoculation routes and establish further insight on the development of prion pathology in vivo. The alterations in localization of the proteins involved in the retrograde axonal transport allow us to propose a mechanism of transport disruption, which involves Rab7-mediated cargo attachment to the dynein-dynactin pathway. These findings suggest novel targets for therapeutic and diagnostic approaches in the early stages of prion disease.
Myocardial aging as a T-cell–mediated phenomenon
In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4⁺ Foxp3⁻ (forkhead box P3) IFN-γ⁺ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population.