Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Item TypeItem Type
-
YearFrom:-To:
-
More FiltersMore FiltersIs Full-Text AvailableSubjectPublisherSourceLanguagePlace of PublicationContributors
Done
Filters
Reset
208
result(s) for
"Friedrich, Robin"
Sort by:
Generation of a NES-mScarlet Red Fluorescent Reporter Human iPSC Line for Live Cell Imaging and Flow Cytometric Analysis and Sorting Using CRISPR-Cas9-Mediated Gene Editing
by
Nouri, Parivash
,
Zimmer, Anja
,
Friedrich, Robin
in
Brain research
,
Calcium - metabolism
,
Cell culture
2022
Advances in the regenerative stem cell field have propelled the generation of tissue-specific cells in the culture dish for subsequent transplantation, drug screening purposes, or the elucidation of disease mechanisms. One major obstacle is the heterogeneity of these cultures, in which the tissue-specific cells of interest usually represent only a fraction of all generated cells. Direct identification of the cells of interest and the ability to specifically isolate these cells in vitro is, thus, highly desirable for these applications. The type VI intermediate filament protein NESTIN is widely used as a marker for neural stem/progenitor cells (NSCs/NPCs) in the developing and adult central and peripheral nervous systems. Applying CRISPR-Cas9 technology, we have introduced a red fluorescent reporter (mScarlet) into the NESTIN (NES) locus of a human induced pluripotent stem cell (hiPSC) line. We describe the generation and characterization of NES-mScarlet reporter hiPSCs and demonstrate that this line is an accurate reporter of NSCs/NPCs during their directed differentiation into human midbrain dopaminergic (mDA) neurons. Furthermore, NES-mScarlet hiPSCs can be used for direct identification during live cell imaging and for flow cytometric analysis and sorting of red fluorescent NSCs/NPCs in this paradigm.
Journal Article
Thermophysical Properties of a Subsoil Drill Core for Geothermal Energy Applications
2022
Urban heat islands (UHI) occur especially in inner-city areas due to small green areas, an excess of high solar heat, and low air circulation. One solution is the “harvesting” of excess solar urban heat through shallow absorber ducts, which are then used in borehole heat exchanger (BHE) fields for later use for heat or cold storage. Knowing the thermophysical properties of the subsurface as accurately as possible is of great importance in the design and configuring of a borehole heat exchanger field as a thermal energy storage system. In this study, a subsoil drill core from a BHE, with a depth of 80 m, was used to determine temperature dependent effective thermal conductivity based on the heat flow meter method, the specific heat capacity based on differential scanning calorimetry, and thermal expansion based on dilatometry in moist and dry states. The results have shown that the actual moisture content of the subsoil sample has a strong impact on the thermal conductivity, as well as on the heat capacity. Thermal expansion measurements have shown the influence of the drying process on the shrinkage of drill core samples and the low thermal expansion of the dry subsoil itself.
Journal Article
Epigenetic Editing to Validate Findings from Methylome-Wide Association Studies of Neuropsychiatric Disorders
2017
DNA methylation is necessary for learning, memory consolidation and has been implicated in a number of neuropsychiatric disorders. Obtaining high quality and comprehensive data for the three common forms of methylation in brain is challenging for methylome-wide association studies (MWAS). To address this we optimized a panel of enrichment methods for screening the brain methylome. Results show that these enrichment techniques approach the coverage and fidelity of the current gold standard bisulfite based techniques. Our MBD-based method can also be used with low amounts of genomic material from limited human biomaterials. Psychiatric disorders have high prevalence and are often chronic making them a leading contributor to disability. Major depressive disorder (MDD) has a lifetime prevalence of ∼15% and high recurrence leading to substantial morbidity and costs to society. The underlying biological processes that contribute to MDD are poorly understood. Noting the importance of DNA methylation in neurobiology, we conducted the largest MWAS in human post-mortem brain uncover novel candidate genes and biomarkers associated with MDD. The top result of this MDD MWAS was within the gene ANKS1B. This gene has been implicated in many past genetic studies of psychiatric disorders and has experimental support as a regulator of neurotransmission. Targeted epigenetic editing technologies allow for precise modification of DNA methylation in living cells. However, an appropriate model system is critical to properly interpreting such experiments. An accelerated protocol for differentiating Ntera2 cells into human neurons was developed for this purpose. Ntera2-derived neurons express key neuronal markers and are well suited to use in epigenetic editing experiments. Concurrently, the generation of the reagents necessary for recapitulating the aberrant methylation at ANKS1B linked to MDD was undertaken. Using a modified CRISPR/Cas9 approach demethylating enzyme was directed to target sites to attempt perform editing of DNA methylation. Results indicate that significant but biologically irrelevant changes to methylation at ANSK1B were achieved. The novelty of the technology employed presented challenges to the success of the current work. However, the field of epigenetic editing is advancing rapidly and will remain an attractive method for functional characterization of future MWAS findings and basic neuroscience research.
Dissertation
Current and future global climate impacts resulting from COVID-19
2020
The global response to the COVID-19 pandemic has led to a sudden reduction of both GHG emissions and air pollutants. Here, using national mobility data, we estimate global emission reductions for ten species during the period February to June 2020. We estimate that global NOx emissions declined by as much as 30% in April, contributing a short-term cooling since the start of the year. This cooling trend is offset by ~20% reduction in global SO2 emissions that weakens the aerosol cooling effect, causing short-term warming. As a result, we estimate that the direct effect of the pandemic-driven response will be negligible, with a cooling of around 0.01 ± 0.005 °C by 2030 compared to a baseline scenario that follows current national policies. In contrast, with an economic recovery tilted towards green stimulus and reductions in fossil fuel investments, it is possible to avoid future warming of 0.3 °C by 2050.Reduced GHG and air pollutant emissions during the COVID-19 lockdowns resulted in declines in NOx emissions of up to 30%, causing short-term cooling, while ~20% SO2 emissions decline countered this for overall minimal temperature effect.
Journal Article
Livestock-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) as Causes of Human Infection and Colonization in Germany
by
Becker, Karsten
,
Schaumburg, Frieder
,
Jurke, Annette
in
Ambulatory care
,
Amino acid sequence
,
Animals
2013
Pigs, cattle and poultry are colonized with MRSA and the zoonotic transmission of such MRSA to humans via direct animal contact, environmental contaminations or meat are a matter of concern. Livestock-associated (LA) MRSA are mostly belonging to clonal complex (CC) 398 as defined by multilocus sequence typing. However, MRSA of other clonal lineages including CC5, CC9 and CC97 have also been detected in livestock animals in Germany. Within the framework of a Dutch-German network project (EUREGIO), 14,036 MRSA isolated from clinical and screening specimens (January 2008 - June 2012) derived from human patients in hospitals as well as general or specialized practices in a German region characterized by a high density of livestock production, were subjected to S. aureus protein A (spa) sequence typing. The prevalence of putative LA-MRSA among the human MRSA isolates was determined by analyzing the detection of livestock-indicator (LI) spa types which had already been reported in German livestock. Overall, 578 spa types were detected among the MRSA isolates. LI spa types t011, t034, t108, t1451, t2011, t571, t1456, t1250, t1255, t1580, t2970, t2346, t1344, t2576, t2330 and t2510 (all of which are indicative for LA-MRSA CC398) accounted for 18.6% of all human isolates. The LI spa types t1430 (CC9), t3992 (CC97), t002 (CC5) and t007 (CC30) were found in 0.14%, 0.01%, 1.01% and 0.04% of all human MRSA isolates, respectively. LI spa types associated with CC398 represented 23% of all MRSA from screening samples and a varying proportion among isolates from clinical specimens ranging between 0% in cerebrospinal fluid, 8% in blood cultures and 14% in deep respiratory fluids. Our findings indicate that LA-MRSA are a major cause for human infection and stress the need for close surveillance. Although LA-MRSA CC398 predominates, the occurrence of putative LA-MRSA from other clonal lineages should be monitored.
Journal Article
Achieving net zero greenhouse gas emissions critical to limit climate tipping risks
by
Lamboll, Robin D.
,
Möller, Tessa
,
Rogelj, Joeri
in
639/766/530/2795
,
704/106/694
,
704/106/694/1108
2024
Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements. Here, we investigate the tipping risks associated with several policy-relevant future emission scenarios, using a stylised Earth system model of four interconnected climate tipping elements. We show that following current policies this century would commit to a 45% tipping risk by 2300 (median, 10–90% range: 23–71%), even if temperatures are brought back to below 1.5 °C. We find that tipping risk by 2300 increases with every additional 0.1 °C of overshoot above 1.5 °C and strongly accelerates for peak warming above 2.0 °C. Achieving and maintaining at least net zero greenhouse gas emissions by 2100 is paramount to minimise tipping risk in the long term. Our results underscore that stringent emission reductions in the current decade are critical for planetary stability.
Temporarily overshooting the 1.5 °C limit risks triggering climate tipping elements. This study finds that every 0.1 °C of warming increases risk, with a strong acceleration above +2.0 °C. Achieving net-zero emissions by 2100 is crucial to minimise long-term risks.
Journal Article
LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains
by
Weng, Jui-Hung
,
Chatterjee, Deep
,
Knapp, Stefan
in
Allosteric properties
,
Allosteric Regulation
,
Allosteric Site
2022
The 2 major molecular switches in biology, kinases and GTPases, are both contained in the Parkinson disease–related leucine-rich repeat kinase 2 (LRRK2). Using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations, we generated a comprehensive dynamic allosteric portrait of the C-terminal domains of LRRK2 (LRRK2 RCKW ). We identified 2 helices that shield the kinase domain and regulate LRRK2 conformation and function. One helix in COR-B (COR-B Helix) tethers the COR-B domain to the αC helix of the kinase domain and faces its activation loop, while the C-terminal helix (Ct-Helix) extends from the WD40 domain and interacts with both kinase lobes. The Ct-Helix and the N-terminus of the COR-B Helix create a “cap” that regulates the N-lobe of the kinase domain. Our analyses reveal allosteric sites for pharmacological intervention and confirm the kinase domain as the central hub for conformational control.
Journal Article
Consciousness is supported by near-critical slow cortical electrodynamics
by
Pappas, Ioannis
,
Muthukumaraswamy, Suresh
,
Mateos, Diego M.
in
Anesthesia
,
Animals
,
Biological Sciences
2022
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.
Journal Article