Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Frischknecht Renato"
Sort by:
Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity
by
Choquet, Daniel
,
Heine, Martin
,
Gundelfinger, Eckart D
in
Animal Genetics and Genomics
,
Animals
,
Behavioral Sciences
2009
Most synapses in the mature CNS are wrapped by a dense extracellular matrix (ECM). The authors show that removing the ECM increased the lateral diffusion of AMPA receptors and affected short-term synaptic plasticity. This suggests that the ECM may modulate synaptic transmission by restricting receptor diffusion.
Many synapses in the mature CNS are wrapped by a dense extracellular matrix (ECM). Using single-particle tracking and fluorescence recovery after photobleaching, we found that this net-like ECM formed surface compartments on rat primary neurons that acted as lateral diffusion barriers for AMPA-type glutamate receptors. Enzymatic removal of the ECM increased extrasynaptic receptor diffusion and the exchange of synaptic AMPA receptors. Whole-cell patch-clamp recording revealed an increased paired-pulse ratio as a functional consequence of ECM removal. These results suggest that the surface compartments formed by the ECM hinder lateral diffusion of AMPA receptors and may therefore modulate short-term synaptic plasticity.
Journal Article
Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity-Dependent Ectodomain Cleavage of Glial NG2
by
Trotter, Jacqueline
,
Perera, Sumudhu S.
,
Neitz, Angela
in
ADAM Proteins - metabolism
,
ADAM10 Protein
,
Amyloid Precursor Protein Secretases - metabolism
2014
The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses.
Journal Article
Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex
by
Rivera, Laura L. Castiblanco
,
Happel, Max F. K.
,
Ohl, Frank W.
in
Acoustic Stimulation
,
adults
,
Analysis of Variance
2014
During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established—that is, learned—capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity.
Journal Article
Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment
2023
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
The mechanical properties of central nervous system (CNS) scar tissue are considered to contribute to axon regeneration failure. Here, the authors identify members of the small leucine-rich proteoglycan family as modulators of the inhibitory viscoelastic response of CNS lesions.
Journal Article
Surface Mobility of Postsynaptic AMPARs Tunes Synaptic Transmission
by
Choquet, Daniel
,
Frischknecht, Renato
,
Béïque, Jean-Claude
in
Action Potentials
,
Aminoacid receptors (glycine, glutamate, gaba)
,
Animals
2008
AMPA glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission. Upon fast consecutive synaptic stimulation, transmission can be depressed. Recuperation from fast synaptic depression has been attributed solely to recovery of transmitter release and/or AMPAR desensitization. We show that AMPAR lateral diffusion, observed in both intact hippocampi and cultured neurons, allows fast exchange of desensitized receptors with naïve functional ones within or near the postsynaptic density. Recovery from depression in the tens of millisecond time range can be explained in part by this fast receptor exchange. Preventing AMPAR surface movements through cross-linking, endogenous clustering, or calcium rise all slow recovery from depression. Physiological regulation of postsynaptic receptor mobility affects the fidelity of synaptic transmission by shaping the frequency dependence of synaptic responses.
Journal Article
Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects
2021
Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone–brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental–physical co-morbidity trias of alcohol abuse—depression/anxiety—bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental–physical co-morbidity trias.
Journal Article
Mice deficient in synaptic protease neurotrypsin show impaired spaced long-term potentiation and blunted learning-induced modulation of dendritic spines
2023
Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT−/−) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT−/− mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT−/− mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT−/− mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT−/− mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.
Journal Article
Unified quantitative model of AMPA receptor trafficking at synapses
by
Czöndör, Katalin
,
Choquet, Daniel
,
Mondin, Magali
in
AMPA receptors
,
Animals
,
Binding, Competitive
2012
Trafficking of AMPA receptors (AMPARs) plays a key role in synaptic transmission. However, a general framework integrating the two major mechanisms regulating AMPAR delivery at postsynapses (i.e., surface diffusion and internal recycling) is lacking. To this aim, we built a model based on numerical trajectories of individual AMPARs, including free diffusion in the extrasynaptic space, confinement in the synapse, and trapping at the postsynaptic density (PSD) through reversible interactions with scaffold proteins. The AMPAR/scaffold kinetic rates were adjusted by comparing computer simulations to single-particle tracking and fluorescence recovery after photobleaching experiments in primary neurons, in different conditions of synapse density and maturation. The model predicts that the steady-state AMPAR number at synapses is bidirectionally controlled by AMPAR/scaffold binding affinity and PSD size. To reveal the impact of recycling processes in basal conditions and upon synaptic potentiation or depression, spatially and temporally defined exocytic and endocytic events were introduced. The model predicts that local recycling of AMPARs close to the PSD, coupled to short-range surface diffusion, provides rapid control of AMPAR number at synapses. In contrast, because of long-range diffusion limitations, extrasynaptic recycling is intrinsically slower and less synapse-specific. Thus, by discriminating the relative contributions of AMPAR diffusion, trapping, and recycling events on spatial and temporal bases, this model provides unique insights on the dynamic regulation of synaptic strength.
Journal Article
The Role of Perineuronal Nets in Physiology and Disease: Insights from Recent Studies
2025
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases. Furthermore, future directions in PNN research are proposed, and the therapeutic potential of targeting PNNs to develop novel treatment options for various neurological disorders is explored. This review emphasizes the importance of PNNs in CNS physiology and pathology and underscores the need for further research in this area.
Journal Article
The extracellular matrix regulates cortical layer dynamics and cross-columnar frequency integration in the auditory cortex
by
El-Tabbal, Mohamed
,
Frischknecht Renato
,
Deliano Matthias
in
Biology
,
Cortex (auditory)
,
Extracellular matrix
2021
In the adult vertebrate brain, enzymatic removal of the extracellular matrix (ECM) is increasingly recognized to promote learning, memory recall, and restorative plasticity. The impact of the ECM on translaminar dynamics during cortical circuit processing is still not understood. Here, we removed the ECM in the primary auditory cortex (ACx) of adult Mongolian gerbils using local injections of hyaluronidase (HYase). Using laminar current-source density (CSD) analysis, we found layer-specific changes of the spatiotemporal synaptic patterns with increased cross-columnar integration and simultaneous weakening of early local sensory input processing within infragranular layers Vb. These changes had an oscillatory fingerprint within beta-band (25–36 Hz) selectively within infragranular layers Vb. To understand the laminar interaction dynamics after ECM digestion, we used time-domain conditional Granger causality (GC) measures to identify the increased drive of supragranular layers towards deeper infragranular layers. These results showed that ECM degradation altered translaminar cortical network dynamics with a stronger supragranular lead of the columnar response profile.El-Tabbal et al removed the extracellular matrix (ECM) in the primary auditory cortex of Mongolian gerbils and assessed both spontaneous and elicited neural activity. They show that ECM degradation alters translaminar cortical network dynamics and they consider its role in neural plasticity.
Journal Article