Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Fritz, Sherilyn"
Sort by:
Holocene variations in Lake Titicaca water level and their implications for sociopolitical developments in the central Andes
Holocene climate in the high tropical Andes was characterized by both gradual and abrupt changes, which disrupted the hydrological cycle and impacted landscapes and societies. High-resolution paleoenvironmental records are essential to contextualize archaeological data and to evaluate the sociopolitical response of ancient societies to environmental variability. Middle-to-Late Holocene water levels in Lake Titicaca were reevaluated through a transfer function model based on measurements of organic carbon stable isotopes, combined with high-resolution profiles of other geochemical variables and paleoshoreline indicators. Our reconstruction indicates that following a prolonged low stand during the Middle Holocene (4000 to 2400 BCE), lake level rose rapidly ~15 m by 1800 BCE, and then increased another 3 to 6 m in a series of steps, attaining the highest values after ~1600 CE. The largest lake-level increases coincided with major sociopolitical changes reported by archaeologists. In particular, at the end of the Formative Period (500 CE), a major lake-level rise inundated large shoreline areas and forced populations to migrate to higher elevation, likely contributing to the emergence of the Tiwanaku culture.
Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains
Dissolved organic matter (DOM) of 27 prairie saline lake ecosystems was investigated in the Northern and Central Great Plains of the United States using absorbance, fluorescence, lignin concentration, and stable C isotope values. The majority of variation in DOM fluorescence among lakes was due to humic (peak C) and microbially formed (peak M) fluorescent components, which appear to be derived from autochthonous primary production. Strong correlations between peak M and nutrients allow us to model total phosphorus (TP) concentration using peak M fluorescence and chromophoric dissolved organic matter (CDOM) absorption. The rate of primary production (PP) was positively correlated with peak M fluorescence and negatively with lignin concentration. Lignin phenol yields in the DOM were generally smaller than those of most freshwater systems. δ 13C values of dissolved organic carbon (DOC) ranged from −25.0‰ to −20.1‰ and were generally enriched relative to typical freshwaters (ca. −27‰). Terrestrial DOM is degraded in prairie lakes, spanning a gradient from mixotrophic to eutrophic, as determined by a color–nutrient model. The photodegradation of autochthonous DOM was significant: CO₂ fluxes from these prairie lakes, modeled from peak M fluorescence, ranged from 5 to 228 mmol C m−2 d−1 (median, 37 mmol C m−2 d−1) and was similar to community respiration estimated from protein fluorescence (median, 50 mmol C m−2 d−1). The combined estimates were about 50% of the global mean total C release previously reported for saline lake ecosystems. The implication of these new results is that the global C release from saline lake ecosystems is likely underestimated.
What is diatomite?
Different types of biogenic remains, ranging from siliceous algae to carbonate precipitates, accumulate in the sediments of lakes and other aquatic ecosystems. Unicellular algae called diatoms, which form a siliceous test or frustule, are an ecologically and biogeochemically important group of organisms in aquatic environments and are often preserved in lake or marine sediments. When diatoms accumulate in large numbers in sediments, the fossilized remains can form diatomite. In sedimentological literature, “diatomite” is defined as a friable, light-coloured, sedimentary rock with a diatom content of at least 50%, however, in the Quaternary science literature diatomite is commonly used as a description of a sediment type that contains a “large” quantity of diatom frustules without a precise description of diatom abundance. Here we pose the question: What is diatomite? What quantity of diatoms define a sediment as diatomite? Is it an uncompacted sediment or a compacted sediment? We provide a short overview of prior practices and suggest that sediment with more than 50% of sediment weight comprised of diatom SiO2 and having high (>70%) porosity is diatomaceous ooze if unconsolidated and diatomite if consolidated. Greater burial depth and higher temperatures result in porosity loss and recrystallization into porcelanite, chert, and pure quartz.
Abrupt Holocene climate change as an important factor for human migration in West Greenland
West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation.
Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement
Humans have altered natural patterns of fire for millennia, but the impact of human-set fires is thought to have been slight in wet closed-canopy forests. In the South Island of New Zealand, Polynesians (Māori), who arrived 700–800 calibrated years (cal y) ago, and then Europeans, who settled ∼150 cal y ago, used fire as a tool for forest clearance, but the structure and environmental consequences of these fires are poorly understood. High-resolution charcoal and pollen records from 16 lakes were analyzed to reconstruct the fire and vegetation history of the last 1,000 y. Diatom, chironomid, and element concentration data were examined to identify disturbance-related limnobiotic and biogeochemical changes within burned watersheds. At most sites, several high-severity fire events occurred within the first two centuries of Māori arrival and were often accompanied by a transformation in vegetation, slope stability, and lake chemistry. Proxies of past climate suggest that human activity alone, rather than unusually dry or warm conditions, was responsible for this increased fire activity. The transformation of scrub to grassland by Europeans in the mid-19th century triggered further, sometimes severe, watershed change, through additional fires, erosion, and the introduction of nonnative plant species. Alteration of natural disturbance regimes had lasting impacts, primarily because native forests had little or no previous history of fire and little resilience to the severity of burning. Anthropogenic burning in New Zealand highlights the vulnerability of closed-canopy forests to novel disturbance regimes and suggests that similar settings may be less resilient to climate-induced changes in the future.
Prolonged Instability Prior to a Regime Shift
Regime shifts are generally defined as the point of 'abrupt' change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.
Deciphering climatic history from lake sediments
Reconstructing climate from lake sediments can be challenging, because the response of lakes and various components of lake systems are mediated by non-climatic factors, such as geomorphic and hydrologic stetting. As a result, the magnitude of lake response to climatic forcing may be non-linear. In addition, changes in the lake system associated with the aging process or non-climatic influences may alter the response to a given climate perturbation. These non-linear and non-stationary characteristics can produce spatial heterogeneity in the pattern and timing of inferred change. One approach for generating regionally robust climatic interpretations from lakes is to increase coordinated efforts to generate and synthesize large data sets, so that localized influences can be more clearly distinguished from broad-scale regional patterns. This approach will be most successful for evaluating climate variation at multi-decadal or longer temporal scales; the climatic interpretation of higher frequency limnological variation can be more complicated, because of dating uncertainties and differential response times of individual proxies and systems.
Ecological resilience in tropical Andean lakes
Little is known about whether changes in lake ecosystem structure over the past 150 years are unprecedented when considering longer timescales. Similarly, research linking environmental stressors to lake ecological resilience has traditionally focused on a few sentinel sites, hindering the study of spatially synchronous changes across large areas. Here, we studied signatures of paleolimnological resilience by tracking change in diatom community composition over the last 2000 years in four Ecuadorian Andean lakes with contrasting ecoregions. We focused on climate and anthropogenic change, and the type of biological responses that these changes induced: gradual, elastic, or threshold. We combined multivariate ordination techniques with nonlinear time-series methods (hierarchical generalized additive models) to characterize trajectories of community responses in each lake, and coherence in such trajectories across lakes. We hypothesized that remote, high-elevation lakes would exhibit synchronous trends due to their shared climatic constraints, whereas lower elevation lakes would show less synchronous trends as a consequence of human density and land-cover alteration. We found that gradual and elastic responses dominated. Threshold-type responses, or regime shifts, were only detected in the less remote lake, after a long period of gradual and elastic changes. Unexpected synchrony was observed in diatom assemblages from geographically distant and human-impacted lakes, whereas lakes under similar broad-scale environmental factors (climate and ecoregion) showed asynchronous community trajectories over time. Our results reveal a complex ecological history and indicate that Andean lakes in Ecuador can gradually adapt and recover from a myriad of disturbances, exhibiting resilience over century to millennial timescales.
Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities
Regime shifts in lake ecosystems can occur in response to both abrupt and continuous climate change, and the imprints they leave in paleolimnological records allow us to investigate and better understand patterns and processes governing ecological changes on geological time scales. This synthesis investigates paleolimnological records that display apparent regime shifts and characterizes the shifts as either smooth, threshold-like or bistable. The main drivers behind the shifts are also explored: direct climate influence on lakes, climate influence mediated through the catchment, lake ontogenetic processes and/or anthropogenic forcing. This framework helps to elucidate the relationship between driver and regime shift dynamics and the type of imprint that the associated regime shifts leaves in sediment records. Our analysis of the limited sites available (22 sites) show that smooth regime shifts are characterized with forcing and response variables acting on similar time scales, whereas regime shifts that demonstrate a threshold like response or a hysteresis response occur on shorter time scales than changes in drivers. The temporal resolution of the record, a common concern in paleo records, limits identification of the timing and rate of the regime shifts. When detected, past regime shifts offer rich opportunities to understand ecosystem responses to climate and other changes and to evaluate the mean state and natural variability of lake ecosystems on time scales of decades to millennia. There are a number of remaining challenges in understanding regime shifts and ecosystem dynamics in a paleolimnological perspective including lack of an appropriate temporal resolution and ecosystem feedback mechanisms. Combining paleoecology with contemporary studies can help clarify the scale of regime shifts and to distinguish patterns in ecosystem changes from natural variability.
Paleolimnological responses of Ecuadorian páramo lakes to local and regional stressors over the last two millennia
Increasing surface air temperatures and human influences (e.g., agriculture, livestock grazing, tourism) are altering lacustrine ecosystems in the South American Andean páramo, and these influences are evident in changes in the diatom-species composition in sediment cores from the region that span the last ~ 150 years. Existing studies are limited by their short temporal scales and limited spatial extent. We analyzed two sediment cores spanning the last two millennia from the northern (Laguna Piñan) and southern (Laguna Fondococha) Andean páramo of Ecuador to provide a longer-term perspective on lake dynamics. Both lakes show shifts in the dominant diatoms through time. Fondococha diatoms shifted in dominance between two Aulacoseira species and in the planktic to benthic ratio, and these shifts are interpreted as evidence of changing lake level. The inferred shifts are corroborated by changes in sediment geochemistry. Piñan shows a directional shift in the diatom assemblage over the period of the record, from benthic diatoms tolerant of high dissolved organic carbon (DOC), low pH, and low nutrients, to an assemblage characteristic of lower DOC, higher pH, nutrients and lake levels. Shifts in Piñan’s diatoms are correlated with tephra layers in the sediment, suggesting that local volcanic deposition may have been responsible for altering the catchment and lake geochemistry. This is supported by relatively high δ13C values in organic matter associated with tephra layers, which become more negative up-section. Our study suggests that remote lakes in spatially heterogenous montane regions act as sentinels of different facets of environmental change and provide insights into Andean ecosystem responses to environmental perturbations.