Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
66
result(s) for
"Fryirs, Kirstie"
Sort by:
What’s in a name? A naming convention for geomorphic river types using the River Styles Framework
by
Brierley, Gary J.
,
Fryirs, Kirstie A.
in
Biology and Life Sciences
,
Catchment scale
,
Classification
2018
Meaningful iteration between place-based knowledge of rivers and generalised, theoretically-framed understandings is a significant challenge in river science and management. How can we communicate knowledge of the inherent complexity of river systems in light of managerial quests for simple, easy-to-apply frameworks that can be used by a wide range of practitioners, such that we can meaningfully transfer experiences in river science and management from one situation to another? Identification, definition, classification and naming are vital parts of this process. In a sense, a name is like a 'brand', for which a consistency of product is expected. The River Styles Framework is a flexible, open-ended approach to river science and management. The Framework applies a set of hierarchical principles to differentiate reaches, interpret their process-based behaviour and examine interactions between patterns of reaches at the catchment scale. Here we outline an evolution and tightening of the Framework to better communicate how to identify and name types of river at the reach scale. Like the River Styles Framework itself, the naming convention applies hierarchical procedures, starting at the valley setting scale, and incorporating analyses of river planform, channel and floodplain landforms (geomorphic units) and bed material texture. Using a series of examples from around the world, we show how this naming convention can be applied to name river reaches and can be adapted to particular purposes in a consistent, readily communicable manner. We outline various challenges that are faced in managing the use of such a naming convention.
Journal Article
Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management
by
Fryirs Kirstie
,
Brierley, Gary
in
Biodiversity
,
Biodiversity loss
,
Catchment management planning
2022
Truths of the Riverscape refer to the use of geomorphological principles to inform sustainable approaches to nature-based river management. Across much of the world a command-and-control philosophy continues to assert human authority over rivers. Tasked to treat rivers as stable and predictable entities, engineers have ‘fixed rivers in place’ and ‘locked them in time’. Unsustainable outcomes ensue. Legacy effects and path dependencies of silenced and strangled (zombified) rivers are difficult and increasingly expensive to address. Nature fights back, and eventually it wins, with disastrous consequences for the environment, society, culture and the economy. The failure to meet the transformative potential of nature-based applications is expressed here as a disregard for ‘Truths of the Riverscape’. The first truth emphasises the imperative to respect diversity, protecting and/or enhancing the distinctive values and attributes of each and every river. A cross-scalar (nested hierarchical) lens underpins practices that ‘know your catchment’. The second truth envisages management practices that work with processes, interpreting the behaviour of each river. This recognises that erosion and deposition are intrinsic functions of a healthy living river—in appropriate places, at appropriate rates. This premise underpins the third truth, assess river condition, highlighting the importance of what to measure and what to measure against in approaches that address the causes rather than the symptoms of unexpected river adjustment. The fourth truth interprets evolutionary trajectory to determine what is realistically achievable in the management of a given river system. Analysis of whether the river sits on a degradation or recovery pathway (i.e., condition is deteriorating or improving), alongside assessment of catchment-specific recovery potential, is used to foresight river futures. Viewed collectively, Truths of the Riverscape provide a coherent platform to develop and apply proactive and precautionary catchment management plans that address concerns for biodiversity loss and climate change adaptation.
Journal Article
Identifying corridors of river recovery in coastal NSW Australia, for use in river management decision support and prioritisation systems
by
Fryirs, Kirstie
,
Agnew, Danelle
in
Anthropogenic factors
,
Biodiversity
,
Biology and Life Sciences
2022
By connecting corridors of river recovery, resilience can be built into river systems to mitigate against future floods and droughts driven by anthropogenic disturbance or climate extremes. However, identifying where these corridors can be built is still lacking in river management practice. The Open Access NSW River Styles database contains comprehensive information on geomorphic river condition and recovery potential. The database can be used to systematically analyse where corridors of river recovery could be created via conservation or rehabilitation. Analysis was undertaken in ArcGIS using the recovery potential layer along 84,342 km of freshwater stream length, across 20 catchments of coastal NSW. We identified 4,905 km of reach connections, defined as an upstream to downstream section of river that is connected end-to-end, and 17,429 km of loci connections defined as more isolated sections of river from which recovery can be seeded and extended into adjacent reaches. There was significant spatial variability in the types and lengths of connections made across the catchments. Some catchments have significant potential to build corridors of recovery along large sections of river, whereas other catchments are more fragmented. These results provide practitioners with a user-friendly distillation of where river conservation and rehabilitation activities could be focussed when working with river recovery in practice. Combined with local on-ground knowledge, this information forms an important input to evidence-based prioritisation and decision making in river management.
Journal Article
Engaging with research impact assessment for an environmental science case study
by
Brierley, Gary J.
,
Fryirs, Kirstie A.
,
Dixon, Thom
in
704/172/4081
,
706/648/496
,
Case studies
2019
Impact assessment is embedded in many national and international research rating systems. Most applications use the Research Impact Pathway to track inputs, activities, outputs and outcomes of an invention or initiative to assess impact beyond scholarly contributions to an academic research field (i.e., benefits to environment, society, economy and culture). Existing approaches emphasise easy to attribute ‘hard’ impacts, and fail to include a range of ‘soft’ impacts that are less easy to attribute, yet are often a dominant part of the impact mix. Here, we develop an inclusive 3-part impact mapping approach. We demonstrate its application using an environmental initiative.
Existing approaches to research impact assessment fail to include a range of soft impacts. The authors present a 3-part impact mapping approach and apply it to an environmental initiative. They highlight that support for realising research impact is vital, and call on researchers to be open to new ideas and avenues for creating impact from their work.
Journal Article
Protocol for extracting flow hydrograph shape metrics for use in time-series flood hydrology analysis
by
Fryirs, Kirstie
,
Arash, Amir Mohammad
,
Ralph, Timothy J.
in
20th century
,
Analysis
,
Catchment areas
2025
The shape characteristics of flow hydrographs hold essential information for understanding, monitoring and assessing changes in flow and flood hydrology at reach and catchment scales. However, the analysis of individual hydrographs is time consuming, making the analysis of hundreds or thousands of them unachievable. A method or protocol is needed to ensure that the datasets being generated, and the metrics produced, have been consistently derived and validated. In this lab protocol, we present workflows in Python for extracting flow hydrographs with any available temporal resolution from any Open Access or publicly available gauging station records. The workflow identifies morphologically-defined flow and flood types (i.e. in-channel fresh, high flow and overbank flood) and uses them to classify hydrographs. It then calculates several at-a-station and upstream-to-downstream hydrograph shape metrics including kurtosis, skewness, peak hydrograph stage, peak arrival time, rate-of-rise, peak-to-peak travel time, flood wave celerity, flood peak attenuation, and flood wave attenuation index. Some metrics require GIS-derived data, such as catchment area and upstream-to-downstream channel distance between gauges. The output dataset provides quantified hydrograph shape metrics which can be used to track changes in flow and flood hydrographs over time, or to characterise the flow and flood hydrology of catchments and regions. The workflows are flexible enough to allow for additional hydrograph shape indicators to be added or swapped out, or to use a different hydrograph classification method that suits local conditions. The protocol could be considered a change detection tool to identify where changes in hydrology are occurring and where to target more sophisticated modelling exercises to explain the changes detected. We demonstrate the workflow using 117 Open Access gauging station records that are available for coastal rivers of New South Wales (NSW), Australia.
Journal Article
A GIS workflow for the identification of corridors of geomorphic river recovery across landscapes
by
Fryirs, Kirstie
,
Agnew, Danelle
,
Graves, Bradley P.
in
Analysis
,
Biology and Life Sciences
,
Catchment scale
2022
The provision of a simplified GIS workflow to analyse the Open Access NSW River Styles database provides non-technical GIS users in river management with the ability to quickly and efficiently obtain information to assist them in catchment-scale rehabilitation prioritisation. Publicly available proprietary GIS software, standard GIS tools, and a packaged digital elevation model are used to demonstrate the ease of analysis for those with some GIS skills, to establish where corridors of geomorphic river recovery occur or could be built at-scale. Rather than a ‘single use’ report, this novel application of GIS methods is designed to be used by those responsible for river management, replicated across landscapes and adjusted according to preferences. Decision making becomes more cost effective, and adaptive to local circumstances and changing river management priorities. The method could also be adjusted and applied to other river monitoring and condition datasets where polyline data layers are available.
Journal Article
Things we can do now that we could not do before: Developing and using a cross-scalar, state-wide database to support geomorphologically-informed river management
by
Healey, Michael
,
Hancock, Fergus
,
Riches, Marcus
in
Adaptive management
,
Artificial intelligence
,
Australia
2021
A fundamental premise of river management is that practitioners understand the resource they are working with. In river management this requires that baseline information is available on the structure, function, health and trajectory of rivers. Such information provides the basis to contextualise, to plan, to be proactive, to prioritise, to set visions, to set goals and to undertake objective, pragmatic, transparent and evidence-based decision making. In this paper we present the State-wide NSW River Styles database, the largest and most comprehensive dataset of geomorphic river type, condition and recovery potential available in Australia. The database is an Open Access product covering over 216,600 km of stream length in an area of 802,000 km 2 . The availability of the database presents unprecedented opportunities to systematically consider river management issues at local, catchment, regional and state-wide scales, and appropriately contextualise applications in relation to programs at other scales (e.g. internationally)–something that cannot be achieved independent from, or without, such a database. We present summary findings from the database and demonstrate through use of examples how the database has been used in geomorphologically-informed river management. We also provide a cautionary note on the limitations of the database and expert advice on lessons learnt during its development to aid others who are undertaking similar analyses.
Journal Article
Using a Hydro-Morphic Classification of Catchments to Characterise and Explain High Flow and Overbank Flood Behaviour
by
Fryirs, Kirstie
,
Arash, Amir Mohammad
,
Ralph, Timothy J.
in
Analysis
,
Australia
,
catchment morphometrics
2025
The morphological characteristics of catchments are key controls on how flow is routed through catchments and the spatial and temporal dynamics of floods, therefore influencing the shape of hydrographs at any location. Here, we developed a hydro-morphic catchment classification to understand the extent to which various catchment characteristics act as controls on flood behaviour. The catchment characteristics include: size (as measured by gauge position in catchment and valley confinement at the gauge site), shape (elongation ratio and form factor), topography (catchment relief and longitudinal slope), and drainage network structure (drainage density). A total of 2452 high flow (near bankfull) and overbank flood hydrographs from rivers in 17 coastal catchments of New South Wales (NSW), Australia were used. Cluster analysis on hydrograph shape metrics of kurtosis, skewness, and rate-of-rise was performed to identify classes of hydrographs and their median shape. Three statistically distinct clusters were delineated for both high flows and overbank floods, and categorised as flashy, intermediate, and broad. Topographic characteristics of catchments (i.e., relief and longitudinal slope) were commonly among the dominant controls for all high flow and overbank flood hydrographs, excluding broad overbank floods. Drainage network structure (i.e., drainage density) also controlled flashy and intermediate high flows, and intermediate and broad overbank floods, while catchment size (i.e., gauge position in the network) influenced broad high flows. Catchment shape (i.e., elongation ratio) influenced broad overbank floods, and is a dominant control on flashy high flows, and intermediate and broad overbank floods. Overall, topographic controls were more useful for differentiating the hydrological behaviour of high flows relative to overbank floods. Understanding the relative control of different catchment morphometric characteristics on flow and flood behaviour can be used to identify the aspects of flood behaviour that are set by imposed controls and cannot therefore be realistically manipulated in management. A hydro-morphic classification can also be used in the design and calibration of hydrological models, tailoring their use to hydro-morphic catchment class.
Journal Article
Spatial and Temporal Variation in Macrophyte Litter Decomposition in a Rare Chain-of-ponds, an Intermittent Stream and Wetland System
by
Hose, Grant C.
,
Fryirs, Kirstie A.
,
Hardwick, Lorraine J.
in
Algae
,
Anthropogenic factors
,
Aquatic plants
2022
Ponds and wetlands around the world face anthropogenic pressures that threaten key ecosystem processes such as nutrient and organic matter cycling. Wetlands in arid and semi-arid regions are particularly at risk from uncertainty of water availability and competing pressures for use. Such threats are most acute for non-perennial systems that rely on occasional surface water flows to maintain important ecological functions.
This study investigates the decomposition of an endemic macrophyte
Cycnogeton procerum
(R.Br.) Buchenau as a key ecosystem process in a chain-of-ponds wetland system, located in the intermittently flowing Mulwaree River, New South Wales, Australia. The aims of this study were to identify spatial and temporal patterns and the relative importance of microbial activity in macrophyte decomposition to improve our understanding of ecological processes in these intermittent systems.
Exponential decomposition rates (proportional mass loss (g)) were highest during spring and summer (0.07-0.10 kd
-1
) and slower during autumn and winter (0.03-0.04 kd
-1
), reflecting seasonal drivers. Decomposition was significantly different in 9 mm and 150 μm mesh bags only during spring, suggesting decomposition was mostly performed by microbes, with invertebrate herbivores possibly only a factor during spring lotic conditions.
Mesotrophic conditions, regulated by flow and internal macrophyte and algal dynamics appear to maintain a highly productive, macrophyte-dominated aquatic wetland system. Temperature was a major factor in decomposition rates and expected increases due to climate change will accentuate pressure on the resilience of the macrophyte community. Alterations caused by changing climate and anthropogenic land use place the ponds at high risk.
Journal Article
The impact of urbanisation on community structure, gene abundance and transcription rates of microbes in upland swamps of Eastern Australia
by
Christiansen, Nicole A.
,
Hose, Grant C.
,
Fryirs, Kirstie A.
in
Abundance
,
Ammonium
,
Aquatic ecosystems
2019
The Temperate Highland Peat Swamps on Sandstone of the Sydney Basin occur in the headwaters of Sydney's drinking water catchments and are listed as endangered ecosystems, yet they have suffered habitat losses and degradation due to human impacts such as urbanisation. Despite ongoing efforts to restore and better protect upland swamps, they remain poorly understood, potentially hindering the effectiveness of management efforts. Essential to overall ecosystem function and the provision of services for human and environmental benefit are the microbial component of wetland ecosystems. In the case of these swamps, the microbes, have not yet been studied. Here, we investigated differences in the microbial community of upland swamps in urbanised catchments compared to swamps from natural catchments in the Blue Mountains. A total of twelve swamps were sampled, six from within urbanised catchments and six with intact vegetation catchments, to compare sediment conditions and microbial community and genes expression and abundances. Catchment impervious area and number of stormwater drains entering a swamp, indicators for urbanisation, positively correlated with the pH and ammonium concentration of swamp sediment. Community analysis of the 16S rRNA gene (T-RFLP, qPCR) revealed the elevated pH of urbanised swamps coincided with changes to the abundance of bacteria and archaea. Furthermore, RT-qPCR revealed genes involved in carbon cycling (mcrA & pmoA) were more likely to be found in urbanised swamps. Taken together, our results indicate that urbanisation of the Blue Mountains is impacting the environmental services provided by the microbial community of upland swamps in the Sydney Basin.
Journal Article