Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
128 result(s) for "Fu, Hualin"
Sort by:
Bamboo leaf flavone changed the community of cecum microbiota and improved the immune function in broilers
It has been shown that bamboo leaf flavone (BLF) displays biological and pharmacological activities in mammals. However, the effects of BLF on broiler gut microbiota and related immune function have not been investigated. The aim of this study was to test our hypothesis that BLF can improve the health status of broilers by modulating the gut microbiota. A total of 300 one-day-old Arbor Acres (AA) broilers were used to characterize their gut microbiota and immune status after feeding diet supplemented with BLF. The V4 hypervariable region of the 16S rRNA gene from cecal bacteria was sequenced via the Illumina MiSeq platform. The Immune status and related parameters were assessed, including the immune organ index (the spleen, thymus, and bursa), serum concentrations of IL-2 and INF-γ, and spleen IL-2 and INF-γ gene expressions. The results showed the BLF diet had an Immune enhancement effect on broilers. In addition, BFL caused the changes of the gut microbial community structure, resulting in greater proportions of bacterial taxa belonging to Lactobacillus , Clostridiales , Ruminococcus , and Lachnospiraceae . These bacteria have been used as probiotics for producing short chain fatty acids in hosts. These results indicate that BLF supplement improves immune function in chicken via modulation of the gut microbiota.
Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells
Background Fluorescent carbon dots (Cdots) have attracted increasing attention due to their potential applications in sensing, catalysis, and biomedicine. Currently, intensive research has been concentrated on the synthesis and imaging-guided therapy of these benign photoluminescent materials. Meanwhile, Cdots have been explored as nonviral vector for nucleic acid or drug delivery by chemical modification on purpose. Results We have developed a microwave assisted one-step synthesis of Cdots with citric acid as carbon source and tryptophan (Trp) as both nitrogen source and passivation agent. The Cdots with uniform size show superior water solubility, excellent biocompatibility, and high quantum yield. Afterwards, the PEI (polyethylenimine)-adsorbed Cdots nanoparticles (Cdots@PEI) were applied to deliver Survivin siRNA into human gastric cancer cell line MGC-803. The results have confirmed the nanocarrier exhibited excellent biocompatibility and a significant increase in cellular delivery of siRNA, inducing efficient knockdown for Survivin protein to 6.1%. In addition, PEI@Cdots complexes mediated Survivin silencing, the arrested cell cycle progression in G 1 phase as well as cell apoptosis was observed. Conclusion The Cdots-based and PEI-adsorbed complexes both as imaging agents and siRNA nanocarriers have been developed for Survivin siRNA delivery. And the results indicate that Cdots-based nanocarriers could be utilized in a broad range of siRNA delivery systems for cancer therapy.
Epidemiology of Blastocystis sp. infection in China: a systematic review
Blastocystis sp., a unicellular intestinal parasite in humans and animals worldwide, is frequently found in immunocompromized patients and people in close contact with animals. Here, we reviewed recent studies on the prevalence, subtypes, and distribution of Blastocystis infection in humans and animals in China. To date, more than 12 provinces have reported Blastocystis infection in humans, with identification of six different subtypes (ST1, ST2, ST3, ST4, ST5, and ST6). The overall infection rate reported was 3.37% (3625/107,695), with the lowest prevalence (0.80%) in Fujian province and the highest prevalence (100%) in Guangdong province. ST3 (62%, 186/300) was the most dominant subtype, identified in all tested provinces in China. A total of eight provinces have reported Blastocystis infection in various animals, with the overall prevalence being 24.66% (1202/4874). Molecular analysis revealed 14 subtypes that infected animals, including 10 known (ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST10, ST13, ST14), and 4 novel (Novel1, Novel2, Novel3, Novel4) subtypes. ST5 was the dominant subtype infecting artiodactyls (44.1%, 460/1044), while ST1 commonly infected carnivores (45.5%, 5/11). These findings provide insights into the epidemiological behavior of Blastocystis sp. in China, and could help in developing effective control strategies against the parasite. Blastocystis sp., un parasite intestinal unicellulaire de l’homme et des animaux dans le monde entier, est fréquemment détecté chez les patients immunodéprimés et les personnes en contact étroit avec les animaux. Ici, nous avons passé en revue des études récentes sur la prévalence, les sous-types et la distribution de l’infection à Blastocystis chez l’homme et l’animal en Chine. À ce jour, plus de 12 provinces ont signalé une infection à Blastocystis chez l’homme, avec l’identification de 6 sous-types différents (ST1, ST2, ST3, ST4, ST5 et ST6). Le taux d’infection global signalé était de 3,37 % (3625/107695), la prévalence la plus faible (0,80 %) étant dans la province du Fujian et la prévalence la plus élevée (100 %) dans la province du Guangdong. ST3 (62 %, 186/300) était le sous-type le plus dominant, identifié dans toutes les provinces testées en Chine. Au total, 8 provinces ont signalé une infection à Blastocystis chez divers animaux, avec une prévalence globale de 24,66 % (1202/4874). L’analyse moléculaire a révélé 14 sous-types infectant des animaux, dont 10 sous-types connus (ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST10, ST13, ST14) et 4 nouveaux (Novel1, Novel2, Novel3, Novel4). ST5 était le sous-type dominant infectant les artiodactyles (44,1 %, 460/1044), tandis que ST1 infectait couramment les carnivores (45,5 %, 5/11). Ces résultats fournissent des informations sur le comportement épidémiologique de Blastocystis sp. en Chine et pourrait aider à élaborer des stratégies de contrôle efficaces contre le parasite.
EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa
Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.
Investigating Protective Effect of Suspension of Paeoniflorin in Combination with Curcumin Against Acute Liver Injury Based on Inhibition of TLR4/NF-κB/NLRP3 Inflammatory Pathway
The objective of this study was to formulate a compound suspension comprising paeoniflorin and curcumin, assess its quality characteristics, and investigate its protective efficacy against acute liver injury in mice. The prescriptions were screened using a single-factor test, and nine groups of suspensions were prepared using the dispersion method. Fifty KM mice (four weeks old) were selected and randomly divided into five groups: the CON, LD, PF, CUR, and PC groups. The doses of both paeoniflorin and curcumin were 100 mg/kg BW, and different suspensions were given to different groups by gavage for 14 days. All the groups except the CON group were injected intraperitoneally with 20 μg/kg LPS and 700 mg/kg D-GalN on the last day. According to the results, the suspension prepared using the optimal prescriptions was orange-yellow in color, with homogeneous turbidity and good re-dispersibility. The combination treatment could reduce the severity of pathological injuries of liver, improve the ultrastructure of hepatocytes, increase the activities of T-SOD, GSH-Px, and CAT, decrease the levels of IFN-γ, TNF-α, and IL-1, and down-regulate the expression of genes such as TLR4, MyD88, IκBα, and NLRP3. The underlying mechanism might be associated with the enhancement of antioxidant enzyme activities, inhibition of the TLR4/NF-κB/NLRP3 signaling pathway, and suppression of inflammasome assembly and release in hepatic tissues.
Cloning and Spatiotemporal Expression Analysis of IGF1R Gene cDNA in Alopex lagopus (Arctic Fox)
This study aimed to clarify the sequence characteristics and spatiotemporal expression patterns of the insulin-like growth factor 1 receptor (IGF1R) gene in Alopex lagopus (Arctic fox), thereby addressing the existing knowledge gap regarding IGF1R-mediated growth regulation in this species. The findings establish a crucial foundation for subsequent investigations into the correlation between this gene and Arctic fox growth traits. Specific primers were designed based on the cDNA sequence of the canine IGF1R gene (Accession No. XM_545828). The full-length coding sequence (CDS) of the Arctic fox IGF1R gene (1617 bp, encoding 538 amino acids) was successfully cloned via RT-PCR. Phylogenetic analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm revealed a 99% sequence homology in the IGF1R gene between the Arctic fox and canine, confirmed their closest evolutionary relationship. Protein characterization showed that the IGF1R protein has a molecular weight of 60.62 kDa (theoretical isoelectric point pI = 5.15), containing one fibronectin type-III domain and one tyrosine kinase domain, classifying it as an acidic hydrophilic transmembrane protein. Phosphorylation site prediction identified 27 phosphorylation sites, with secondary structures dominated by α-helices (26.39%) and random coils (52.79%). The IGF1R gene displayed significant tissue-specific expression variations across 12 examined tissues in Arctic foxes: highest expression levels in testis, minimal expression in stomach, and no detectable expression in duodenum. Spatiotemporal expression analysis revealed that in 2-, 4-, and 6-month-old individuals, hepatic IGF1R exhibited a progressive increase, testicular expression reached peak levels at 6 months, and skeletal muscle demonstrated transient upregulation peaking at 4 months. These spatiotemporal expression patterns suggest that IGF1R may participate in metabolism and organ developmental processes during critical growth stages of Arctic foxes through tissue-specific regulation.
Occurrence and genetic characteristics of Cryptosporidium spp. and Enterocytozoon bieneusi in pet red squirrels (Sciurus vulgaris) in China
Cryptosporidium spp. and Enterocytozoon bieneusi are two well-known protist pathogens which can result in diarrhea in humans and animals. To examine the occurrence and genetic characteristics of Cryptosporidium spp. and E. bieneusi in pet red squirrels (Sciurus vulgaris), 314 fecal specimens were collected from red squirrels from four pet shops and owners in Sichuan province, China. Cryptosporidium spp. and E. bieneusi were examined by nested PCR targeting the partial small subunit rRNA (SSU rRNA) gene and the ribosomal internal transcribed spacer (ITS) gene respectively. The infection rates were 8.6% (27/314) for Cryptosporidium spp. and 19.4% (61/314) for E. bieneusi. Five Cryptosporidium species/genotypes were identified by DNA sequence analysis: Cryptosporidium rat genotype II (n = 8), Cryptosporidium ferret genotype (n = 8), Cryptosporidium chipmunk genotype III (n = 5), Cryptosporidium rat genotype I (n = 4), and Cryptosporidium parvum (n = 2). Additionally, a total of five E. bieneusi genotypes were revealed, including three known genotypes (D, SCC-2, and SCC-3) and two novel genotypes (RS01 and RS02). Phylogenetic analysis revealed that genotype D fell into group 1, whereas the remaining genotypes clustered into group 10. To our knowledge, this is the first study to report Cryptosporidium spp. and E. bieneusi in pet red squirrels in China. Moreover, C. parvum and genotype D of E. bieneusi, previously identified in humans, were also found in red squirrels, suggesting that red squirrels may give rise to cryptosporidiosis and microsporidiosis in humans through zoonotic transmissions. These results provide preliminary reference data for monitoring Cryptosporidium spp. and E. bieneusi infections in pet red squirrels and humans.
Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China
Background Staphylococcus aureus ( S. aureus ), especially methicillin-resistant Staphylococcus aureus (MRSA), is considered a common zoonotic pathogen, causing severe infections. The objective of this study was to investigate the antimicrobial susceptibility, resistance genes and molecular epidemiology among MRSA and methicillin-susceptible Staphylococcus aureus (MSSA) isolated from food animals in Sichuan Province, China. Methods This study was conducted on 236 S. aureus isolates. All isolates were subjected to antimicrobial susceptibility testing by using a standard microbroth dilution method. The Polymerase Chain Reaction (PCR) was performed to identify genes encoding the β-lactams resistance ( blaZ , mecA ), macrolides ( ermA , ermB , ermC ) and aminoglycosides ( aacA-aphD ). The molecular structures and genomic relatedness of MRSA isolates were determined by staphylococcal chromosome cassette mec ( SCCmec ) typing and pulsed-field gel electrophoresis (PFGE), respectively. Results Among 236 isolates, 24 (10.17 %) were recognized as MRSA. MRSA isolates showed different resistance rates to 11 antimicrobials ranging from 33.33 to 100 %, while for MSSA isolates the rates varied from 8.02 to 91.51 %. Multi-drug resistance phenotype was found in all MRSA isolates. The ermC gene encoding macrolides-lincosamides-streptogramin B was the most prevalent gene detected in 87.29 % of the S. aureus isolates, followed by ermB (83.05 %), blaZ (63.98 %), aacA-aphD (44.07 %), ermA (11.44 %) and mecA (11.02 %) genes. The prevalence of resistance genes in MRSA isolates was significantly higher than that of MSSA. Regarding the molecular morphology, SCCmec III (12/24, 50 %) was the most common SCCmec type. Furthermore, the PFGE typing showed that 24 MRSA were divided into 15 cluster groups (A to O), the major pulsotype J encompassed 25 % of MRSA isolates. Conclusions The S. aureus isolates from food animals in Sichuan province of China have severe antimicrobials resistance with various resistance genes, especially MRSA isolates. Additionally, the genetic pool of MRSA isolates is diverse and complex, and further investigation is necessary.
First identification and molecular subtyping of Blastocystis sp. in zoo animals in southwestern China
Background Blastocystis sp. is an anaerobic protozoan that parasitizes many animal hosts and the human gastrointestinal tract, and its pathogenicity is controversial. Captive wildlife may be potential reservoirs for human infection with Blastocystis sp. The present study was performed to investigate the prevalence and subtype distribution of Blastocystis sp. in zoo animals in Sichuan Province, southwestern China. Methods A total of 420 fresh fecal samples were collected from 54 captive wildlife species in four zoos in southwestern China between June 2017 and September 2019. The prevalence and subtype (ST) genetic characteristics of Blastocystis sp. were determined by PCR amplification of the barcode region of the SSU rRNA gene and phylogenetic analysis. Results Overall, 15.7% (66/420) of the animal samples and 20.7% (14/54) of the species tested were shown to be infected with Blastocystis sp. The highest prevalence of Blastocystis sp. was found in Panzhihua Zoo (24.3%), which was significantly higher than that in Chengdu Zoo (6.9%), and Xichang Zoo (2.9%) ( P  < 0.05). There are also significant differences in the prevalence of Blastocystis sp. among different species ( P  < 0.05), and the highest of Blastocystis sp. prevalence was observed in white-cheeked gibbon, black great squirrel, and red giant flying squirrel (100%). Subtype analysis of Blastocystis sp. revealed nine subtypes, including six zoonotic STs (ST1-5, and ST8) and three animal-specific STs (ST10, ST14, and ST17), with ST17 as the predominant subtype (26/66) in Blastocystis sp.-positive isolates. Conclusions To our knowledge, this is the first report on the prevalence and subtype distribution of Blastocystis sp. among captive wildlife in zoos in southwestern China. This study highlights that these animals may serve as reservoirs for human Blastocystis sp. infections. Graphical Abstract
Combination of Slightly Acidic Electrolyzed Water and Hydrogel to Enhance Stability, Increase Antibacterial Efficacy, and Promote Infectious Wound Healing
Wound infections remain significant challenges for current tissue adhesives, primarily due to their poor adhesion in moist environments, slow bonding, cytotoxicity, and limited antibacterial properties. Slightly acidic electrolyzed water (SAEW), a potent disinfectant, suffers from limited stability due to chlorine loss. This study developed a novel SAEW-based hydrogel (SAEW-gel) by combining SAEW with chitosan and β-glycerol disodium phosphate to improve its stability and therapeutic potential. SAEW-gel demonstrated high water absorption, long-term water retention, and enhanced antibacterial activity against S. aureus and E. coli compared to SAEW alone. It maintained germicidal efficacy after prolonged storage and significantly accelerated wound healing in a rat model, achieving a 95.41% healing rate by the 12th day of treatment. Mechanistically, SAEW-gel reduced inflammatory cell infiltration, promoted granulation and collagen formation, and regulated inflammatory markers (IL-6, IL-1β, TNF-α, MPO, HYP). These findings highlight SAEW-gel as a promising biomaterial for treating infectious wounds and support its potential for future clinical application.