Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
113
result(s) for
"Fujimura, Taku"
Sort by:
Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers
2022
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Journal Article
Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers
2020
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
Journal Article
Immunotherapy for Melanoma: The Significance of Immune Checkpoint Inhibitors for the Treatment of Advanced Melanoma
2022
Therapeutic options for treating advanced melanoma have progressed rapidly in recent decades. Until 6 years ago, the regimen for treating advanced melanoma consisted mainly of cytotoxic agents such as dacarbazine and type I interferons. Since 2014, anti-programmed cell death 1 (PD1) antibodies have been recognized as anchor drugs for treating advanced melanoma, with or without additional combination drugs such as ipilimumab, but the efficacies of these immunotherapies are not fully satisfactory. In this review, we describe the development of the currently available anti-PD1 Abs-based immunotherapies for advanced melanoma, focusing on their efficacy and immune-related adverse events (AEs), as well as clinical trials still ongoing for the future treatment of advanced melanoma.
Journal Article
The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin
by
Nagashima, Takeshi
,
Aiba, Setsuya
,
Hidaka, Takanori
in
631/250
,
631/337
,
Air Pollutants - adverse effects
2017
There are suspected links between air pollution and atopic dermatitis, but the mechanism has remained unclear. Yamamoto and colleagues demonstrate that air pollutants trigger activation of the aryl hydrocarbon receptor in the skin, hyperinnervation and an itch-scratch cycle that leads to atopic dermatitis.
Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified
Artn
as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and
ARTN
expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.
Journal Article
Plasminogen Activator Inhibitor-1 in Skin Malignancies: Therapeutic Implications of Its Inhibition
by
Fujimura, Taku
,
Asano, Yoshihide
,
Muto, Yusuke
in
Angiogenesis
,
Animals
,
Carcinoma, Squamous Cell - drug therapy
2025
Plasminogen activator inhibitor-1 (PAI-1), a key regulator of fibrinolysis, has emerged as a critical stromal factor that contributes to tumor progression in various malignancies, including skin cancers. Beyond its classical role in inhibiting plasminogen activators, PAI-1 exerts pleiotropic effects within the tumor microenvironment, promoting immunosuppression, angiogenesis, and extracellular matrix remodeling. This review highlights the tumor-promoting functions of PAI-1 in melanoma, cutaneous squamous cell carcinoma, cutaneous angiosarcoma and cutaneous T-cell lymphoma, with a particular focus on its modulation of tumor-associated macrophages, cancer-associated fibroblasts, and endothelial cells. We also discuss recent preclinical and clinical studies targeting PAI-1, including TM5614, a novel oral PAI-1 inhibitor currently under investigation in phase II /III trials. By summarizing the multifaceted roles of PAI-1 and its impact on the immune and stromal landscape of skin malignancies, this review provides a rationale for PAI-1 as a promising therapeutic target and calls for further clinical validation of PAI-1–directed therapies.
Journal Article
First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements
by
Aiba, Setsuya
,
Okabe, Takahiro
,
Fujimura, Taku
in
639/166/985
,
639/166/988
,
692/4028/67/1813/1634
2019
Melanoma is an aggressive skin cancer that originates from melanocytes and, especially in the case of early-stage melanoma, is distributed adjacent to the epidermis and superficial dermis. Although early-stage melanoma can be distinguished from benign nevus via a dermoscopy, it is difficult to distinguish invasive melanoma in its early stages from
in situ
melanoma. Because invasive melanoma must undergo a sentinel lymph node biopsy to be diagnosed, a non-invasive method to detect the micro-invasion of early-stage melanoma is needed for dermato-oncologists. This paper proposes a novel quantitative melanoma identification method based on accurate measurements of thermal conductivity using a pen-shaped device. This method requires skin temperature data for one minute to determine the effective thermal conductivity of the skin, allowing it to distinguish melanoma lesions from healthy skin. Results suggest that effective thermal conductivity was negative for
in situ
melanoma. However, in accordance with tumour progression, effective thermal conductivity was larger in invasive melanoma. The proposed thermal conductivity measurement is a novel tool that detects the micro-invasion of melanoma.
Journal Article
Recent Advances in Immunotherapy for Melanoma: Perspectives on the Development of Novel Treatments: A Mini Review
2025
It has been more than a decade since anti-PD-1 and anti-CTLA-4 antibodies were first introduced for the treatment of unresectable melanoma. The advent of these immunotherapies has dramatically transformed the treatment landscape. In recent years, anti-PD-1 antibodies have become the cornerstone of melanoma therapy, and the development of new treatment regimens has advanced rapidly in both Eastern and Western countries. However, clinical practice has revealed lower response rates in East Asian melanoma patients compared to Caucasian populations. This discrepancy may be partially attributed to T cell immune exhaustion within the tumor microenvironment, although the detailed mechanisms remain unclear. Moreover, there is currently no established treatment for BRAF wild-type melanoma that is resistant to anti-PD-1 antibodies. This review discusses the currently available therapeutic strategies for advanced melanoma and addresses the aforementioned challenges, highlighting recent efforts in both Eastern and Western regions.
Journal Article
The Antimicrobial Peptide Cathelicidin Exerts Immunomodulatory Effects via Scavenger Receptors
by
Aiba, Setsuya
,
Fujimura, Taku
,
Asano, Yoshihide
in
Cathelicidins - immunology
,
Cathelicidins - pharmacology
,
Cyclooxygenase 2 - genetics
2023
An active form of cathelicidin antimicrobial peptide, LL-37, has immunomodulatory and stimulatory effects, though the specific pathways are not clear. The purpose of this study was to identify the cellular pathways by which LL-37 amplifies the inflammation induced by damage-associated molecular patterns (DAMPs). We performed DNA microarray, reverse transcription polymerase chain reaction, immunoblotting, and proximity ligation assays using cultured keratinocytes treated with LL-37 and/or the DAMP poly(I:C), a synthetic double-stranded RNA. In contrast to the combination of LL-37 and poly(I:C), LL-37 alone induced genes related to biological metabolic processes such as VEGFA and PTGS2 (COX-2). Inhibition of FPR2, a known receptor for cathelicidin, partially suppressed the induction of VEGFA and PTGS2. Importantly, VEGFA and PTGS2 induced by LL-37 alone were diminished by the knockdown of scavenger receptors including SCARB1 (SR-B1), OLR1 (SR-E1), and AGER (SR-J1). Moreover, LL-37 alone, as well as the combination of LL-37 and poly(I:C), showed proximity to the scavenger receptors, indicating that LL-37 acts via scavenger receptors and intermediates between them and poly(I:C). These results showed that the broad function of cathelicidin is generally dependent on scavenger receptors. Therefore, inhibitors of scavenger receptors or non-functional mock cathelicidin peptides may serve as new anti-inflammatory and immunosuppressive agents.
Journal Article
Clinical and histopathological characteristics and survival analysis of 4594 Japanese patients with melanoma
2019
Background The incidence of melanoma among those of an Asian ethnicity is lower than in Caucasians; few large‐scale Asian studies that include follow‐up data have been reported. Objectives To investigate the clinical characteristics of Japanese patients with melanoma and to evaluate the prognostic factors. Methods Detailed patient information was collected from the database of Japanese Melanoma Study Group of the Japanese Skin Cancer Society. The American Joint Committee on Cancer seventh Edition system was used for TNM classification. The Kaplan‐Meier method and Cox proportional hazards model were used to estimate the impact of clinical and histological parameters on disease‐specific survival in patients with invasive melanoma. Results In total, 4594 patients were included in this analysis. The most common clinical type was acral lentiginous melanoma (40.4%) followed by superficial spreading melanoma (20.5%), nodular melanoma (10.0%), mucosal melanoma (9.5%), and lentigo maligna melanoma (8.1%). The 5‐year disease‐specific survival for each stage was as follows: IA = 98.0%, IB = 93.9%, IIA = 94.8%, IIB = 82.4%, IIC = 71.8%, IIIA = 75.0%, IIIB = 61.3%, IIIC = 41.7%, and IV = 17.7%. Although multivariate analysis showed that clinical classifications were not associated with survival across all stages, acral type was an independent poor prognostic factor in stage IIIA. Conclusions Our study revealed the characteristics of melanoma in the Japanese population. The 5‐year disease‐specific survival of each stage showed a similar trend to that of Caucasians. While clinical classification was not associated with survival in any stages, acral type was associated with poor survival in stage IIIA. Our result might indicate the aggressiveness of acral type in certain populations.
Journal Article
Significance of BRAF Kinase Inhibitors for Melanoma Treatment: From Bench to Bedside
by
Aiba, Setsuya
,
Fujimura, Taku
,
Kambayashi, Yumi
in
Binding sites
,
Chemotherapy
,
Clinical trials
2019
According to clinical trials, BRAF kinase inhibitors in combination with MEK kinase inhibitors are among the most promising chemotherapy regimens for the treatment of advanced BRAF-mutant melanoma, though the rate of BRAF mutation gene-bearing cutaneous melanoma is limited, especially in the Asian population. In addition, drug resistance sometimes abrogates the persistent efficacy of combined therapy with BRAF and MEK inhibitors. Therefore, recent pre-clinical study-based clinical trials have attempted to identify optimal drugs (e.g., immune checkpoint inhibitors or histone deacetylase (HDAC) inhibitors) that improve the anti-melanoma effects of BRAF and MEK inhibitors. In addition, the development of novel protocols to avoid resistance of BRAF inhibitors is another purpose of recent pre-clinical and early clinical trials. This review focuses on pre-clinical studies and early to phase III clinical trials to discuss the development of combined therapy based on BRAF inhibitors for BRAF-mutant advanced melanoma, as well as mechanisms of resistance to BRAF inhibitors.
Journal Article