Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Funk, Jennifer L."
Sort by:
Differences in plasticity between invasive and native plants from a low resource environment
1. Phenotypic plasticity is often cited as an important mechanism of plant invasion. However, few studies have evaluated the plasticity of a diverse set of traits among invasive and native species, particularly in low resource habitats, and none have examined the functional significance of these traits. 2. I explored trait plasticity in response to variation in light and nutrient availability in five phylogenetically related pairs of native and invasive species occurring in a nutrient-poor habitat. In addition to the magnitude of trait plasticity, I assessed the correlation between 16 leaf- and plant-level traits and plant performance, as measured by total plant biomass. Because plasticity for morphological and physiological traits is thought to be limited in low resource environments (where native species usually display traits associated with resource conservation), I predicted that native and invasive species would display similar, low levels of trait plasticity. 3. Across treatments, invasive and native species within pairs differed with respect to many of the traits measured; however, invasive species as a group did not show consistent patterns in the direction of trait values. Relative to native species, invasive species displayed high plasticity in traits pertaining to biomass partitioning and leaf-level nitrogen and light use, but only in response to nutrient availability. Invasive and native species showed similar levels of resource-use efficiency and there was no relationship between species plasticity and resource-use efficiency across species. 4. Traits associated with carbon fixation were strongly correlated with performance in invasive species while only a single resource conservation trait was strongly correlated with performance in multiple native species. Several highly plastic traits were not strongly correlated with performance which underscores the difficulty in assessing the functional significance of resource conservation traits over short timescales and calls into question the relevance of simple, quantitative assessments of trait plasticity. 5. Synthesis. My data support the idea that invasive species display high trait plasticity. The degree of plasticity observed here for species occurring in low resource systems corresponds with values observed in high resource systems, which contradicts the general paradigm that trait plasticity is constrained in low resource systems. Several traits were positively correlated with plant performance suggesting that trait plasticity will influence plant fitness.
Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms
Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts.
Leaf traits within communities: Context may affect the mapping of traits to function
The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution.
Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species
Invasive species are expected to cluster on the \"high-return\" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.
A functional trait perspective on plant invasion
• Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. • Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then 'scale up' to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. • Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict ftiture invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.
The symbionts made me do it
High tissue nitrogen (N) concentrations in N-fixing legumes may be driven by an evolutionary commitment to a high N strategy, by higher N availability from fixation, or by some other cause. To disentangle these hypotheses, we asked two questions: are legumes hardwired to have high N concentrations? Aside from delivering fixed N, how does inoculation affect legume N concentrations? In order to understand drivers of plant stoichiometry, we subjected four herbaceous legume species to nine levels of N fertilization in a glasshouse. Half of the individuals were inoculated with crushed nodules, whereas the other half remained uninoculated and could not fix N. Across four legume species, we found that tissue stoichiometry and nutrient content were more plastic than has been described for any other plant species. In addition, inoculated plants had higher tissue N concentrations than N fixation activity alone can explain. Rather than being hardwired for high N or phosphorus (P) demand, the legumes we examined were highly flexible in their nutrient allocation. Understanding the drivers of legume N concentrations is essential to understanding the role of N fixers in community- and ecosystem-level process
Allometric relationships for eight species of 4–5 year old nitrogen-fixing and non-fixing trees
Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species ( Robinia pseudoacacia , Gliricidia sepium , Casuarina equisetifolia , Acacia koa , Morella faya ) and three non-fixing tree species ( Betula nigra , Psidium cattleianum , Dodonaea viscosa ) grown in field sites in New York and Hawaii for 4–5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra , along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1–16 cm basal diameter; 0.24–8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R 2 values: 0.91–0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80–0.96 for foliar biomass, 0.94–0.99 for main stem biomass, 0.77–0.98 for secondary stem biomass, and 0.88–0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species.
Symbiotic nitrogen fixation does not stimulate soil phosphatase activity under temperate and tropical trees
Symbiotic nitrogen (N)-fixing plants can enrich ecosystems with N, which can alter the cycling and demand for other nutrients. Researchers have hypothesized that fixed N could be used by plants and soil microbes to produce extracellular phosphatase enzymes, which release P from organic matter. Consistent with this speculation, the presence of N-fixing plants is often associated with high phosphatase activity, either in the soil or on root surfaces, although other studies have not found this association, and the connection between phosphatase and rates of N fixation—the mechanistic part of the argument—is tenuous. Here, we measured soil phosphatase activity under N-fixing trees and non-fixing trees transplanted and grown in tropical and temperate sites in the USA: two sites in Hawaii, and one each in New York and Oregon. This provides a rare example of phosphatase activity measured in a multi-site field experiment with rigorously quantified rates of N fixation. We found no difference in soil phosphatase activity under N-fixing vs. non-fixing trees nor across rates of N fixation, though we note that no sites were P limited and only one was N limited. Our results add to the literature showing no connection between N fixation rates and phosphatase activity.
Evolutionary responses of invasive grass species to variation in precipitation and soil nitrogen
Global climate models suggest that many ecosystems will experience reduced precipitation over the next century and the consequences for invasive plant performance are largely unknown. Annual invasive species may be able to quickly evolve traits associated with drought escape or tolerance through rapid genetic changes. We investigated the influence of 5 years of water and nitrogen manipulations on trait values in a southern California grassland system. Seeds from two annual grass species (Avena barbata and Bromus madritensis) were collected from experimental plots and grown in a common environment over two generations. We measured 14 physiological, morphological, phenological and reproductive traits. Both species displayed phenotypic differences depending on the water treatment from which they were collected, but not depending on the nitrogen treatment. Both species displayed trait values characteristic of drought escape (e.g. earlier flowering in A. barbata and B. madritensis, lower water‐use efficiency in B. madritensis) when grown from the seeds collected from plots that experienced five years of reduced precipitation. Furthermore, A. barbata individuals grown from the seeds collected from drought plots had higher reproductive output and higher photosynthetic performance than individuals grown from water addition plots, with individuals grown from ambient plots displaying intermediate trait values. Notably, we found no phenotypic variation among treatments for six root traits. Synthesis. Trait differences were observed following two generations in a common garden, suggesting that treatment differences were genetically based. This suggests that populations were responding to selection over the 5 years of water manipulations, a remarkably short time period. The rapid evolutionary responses observed here may help these two widespread invasive grass species thrive under reduced precipitation scenarios, which could have important implications for fire dynamics, invasive species management and native plant restoration in communities invaded by annual grasses.
Regeneration: an overlooked aspect of trait-based plant community assembly models
1. Despite the disproportionate influence that propagule production, dispersal, seed-to-seedling recruitment and vegetative reproduction can have on plant population and community dynamics, progress has been slow in the directed collection of regeneration traits to inform community assembly outcomes. 2. While seed mass is globally available and linked to growth and reproductive output, there are limits to its explanatory ability. In this essay, we call for expanded efforts to integrate a more diverse set of regeneration traits into community assembly models. 3. First, we extend an existing community assembly framework to conceptualize regeneration as a series of transitional processes whose outcomes are influenced by abiotic filters, biotic interactions and species traits. We then briefly review the literature, highlighting filters and traits of demonstrated or theorized importance for each transition. Finally, we place regeneration in the context of existing and emerging modelling approaches in trait-based community assembly, summarizing key areas of progress needed to integrate regeneration traits into these efforts. 4. Synthesis. By incorporating influential regeneration traits into empirical studies and global data bases, we can begin to disentangle regenerative mechanisms underlying community assembly outcomes and enhance rapidly developing models of species' abundances, distributions and responses to environmental change.