Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Furdas, Yurii"
Sort by:
Examining Wind Flow's Impact on Multi-Storey Buildings: A Quest for Quality Improvement
This scientific article delves into the intricacies of wind flow's impact on multi-storey buildings, presenting results from a series of experimental investigations. The research encompasses an examination of wind interactions with buildings of varying heights and geometric profiles. Furthermore, it unveils the effects of tall structures on the natural ventilation and smoke evacuation systems of shorter edifices, considering different wind flow directions. The study leverages specialized wind tunnel and measurement techniques for a comprehensive analysis of wind-induced loads on buildings. The acquired insights furnish crucial input for the design of single-story temporary modular constructions within densely populated urban areas, subject to wind-induced stresses. Additionally, they hold potential applicability in the advancement of energy-efficient technologies and strategies within the realm of construction. The acquired dataset underscores the criticality of scrutinizing wind flow's impact on structures of varied typologies and dimensions and will allow to significantly improve the quality and efficiency of modern buildings in the future.
Passive Ventilation of Residential Buildings Using the Trombe Wall
The article explores passive systems for regulating microclimates in residential settings, with a focus on modular constructions. It investigates the use of the trombe wall system for passive ventilation to ensure comfort and hygiene. The study examines building designs that enable effective air circulation without using mechanical systems. Furthermore, the effectiveness of the passive system of using solar energy with the trombe wall as a ventilation device in modular houses has been experimentally confirmed. Although the research confirms the effectiveness of this solar system in modular homes, there is limited documentation regarding its overall efficiency, particularly concerning the impact of the surface pressure coefficient on ventilation. The study establishes the correlations governing the thermosiphon collector’s effectiveness at varying air layer thicknesses. Optimal parameters, such as maximum air consumption (L = 120 m3h−1), are identified at an air layer thickness (δ) of 100 mm and outlet openings area (F) of 0.056 m2. These findings pave the way for improving passive systems aimed at maintaining optimal thermal and air conditions in modern homes. The findings suggest the potential for more efficient and sustainable housing solutions. Further research is essential to understand how factors like building design and wind speed affect ventilation system efficacy.
Investigation of Pressure Coefficient Distribution on the Surface of a Modular Building
This article considers the distribution of the pressure coefficient on the surface of a modular house model in order to further assess the possibility of operation of a thermosyphon solar collector integrated into the external protection. The experiment was planned to estimate the factors influencing the value of the aerodynamic coefficient. The results of experimental studies conducted in a wind tunnel are presented. The obtained graphical dependences were compared with the results of computer simulations and convergence was evaluated.
Investigation of thermal and air efficiency in trombe wall of modular building
The proposed Trombe wall design is an innovative and effective solution for addressing issues related to building energy efficiency. The Trombe wall can help reduce a building’s energy consumption, provide optimal indoor temperature, and minimize the building’s environmental impact by utilizing renewable energy sources.The article deals with the study of the heat-air characteristics of the Trombe Wall, which performs the functions of external protection of a modular house, with the aim of further evaluating the possibility of using it as a hybrid protection with additional heating and ventilation functions assigned to it. The results of experimental research conducted on one of the elements of external protection of a modular house in the form of the Trombe Wall are presented. The experimentally obtained graphic dependences were compared with the calculated data and the convergence was evaluated. The proposed design allows you to organize air exchange in the premises with a multiplicity within 1–1.5 h -1, and also provides an opportunity to provide additional thermal power in the amount of 250 W/m 2. The article presents the results of experimental studies that allow to evaluate the thermal characteristics of the proposed design of external protection for a modular house. These results indicate that with the given geometric dimensions, in particular with a volume of 14 m 3, the thermal power utilized by the Trombe wall is within 0.2–0.7 kW