Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Gálová, Andrea"
Sort by:
Persistence of a vegetation mosaic in a peripheral region
Fluctuations in intensity of human impact and corresponding vegetation changes have been reported from different parts of Europe for the period from the beginning of the 1st millennium ad to the high Middle Ages. In the Bílé Karpaty mountains (White Carpathians), a region well-known for its biologically valuable ancient grasslands, an extensive spread of woodland could have occurred in the Migration period (4th–6th century) and especially in the Confinium period (11th–12th century), when settling of this border region was legally prohibited. However, Holocene continuity of non-woodland vegetation was suggested as an explanation for the unique species richness of the local grasslands. If this explanation is true, then the turbulent times in medieval history could not have led to complete re-establishment of woodland. To test this idea palaeoecologically, we analysed four new profiles from wetland deposits for pollen, macrofossils and abiotic proxies, and re-dated some old profiles from the area. The results show the continual presence of human impact indicators since the Migration period in the southwest of the Bílé Karpaty, where these unique grasslands occur. Agricultural activities were indicated by pollen of crops, ruderals, weeds and grassland taxa and by macrofossils of fen-grassland plants. Grazing and burning seem to have been the main disturbances during the older period, while mowing of meadows by scythe became more important since the 17th century. Fossil records differed among the sites as a consequence of differences in altitude and disturbance regimes, but converged gradually with time. Despite intensification of human activities, the landscape remained mosaic-like. Indicators of undisturbed woodlands have been detected only in the northeast. Continuous yet perhaps never too intensive disturbances might therefore have maintained the ancient grassland species pool in the long term.
Holocene development of two calcareous spring fens at the Carpathian-Pannonian interface controlled by climate and human impact
There is still not enough palaeoecological data from the southwestern part of the Western Carpathians, where mountain ridges steeply rise from the dry and warm Pannonian basin. The reason is a low availability of sites with sediments harbouring fossil remains. In the Považský Inovec Mts, two small protected calcareous wetlands occur in different geographical position and contain suitable sediments. One represents a foothill site (initiated ca 13,000 cal. BP) whereas the other a low-mountain site (initiated ca 7,400 cal. BP). We investigated fossil pollen, spores, and macroscopic remains of plants and molluscs from their sediments. We further reviewed archaeological data, constructed a macrophysical climate model (MCM) and confronted it with other palaeoclimatic proxies. Temperate deciduous trees (Quercus, Corylus and Ulmus) occurred since the Allerød, but their expansion was blocked by a harsh climate in Younger Dryas, when Larix, Pinus and Betula nana still occurred. The climate firstly moistened at ca 9,500 cal. BP and more distinctly at ca 8,500 cal. BP, which was reflected by a strong calcium carbonate precipitation and expansion of Tilia cordata t., Hedera helix, and Ustulina. Although the MCM predicted a rather stable climate since 8,000 cal. BP, certain changes in aquatic mollusc abundances may indicate hydrological fluctuations, as they are paralleled by changes in climate humidity indicated by other evidence from the Western Carpathians. Younger hydrological fluctuations may be alternatively explained by human activities as they correspond with macro-charcoal abundance and indicators of wetland openness. During their existence, both fens harboured only few fen plant and mollusc species specialized to low-productive sedge-moss fens. In the Middle Holocene both sites were encroached by woody plants (Alnus, Picea and Salix), as most other spring fens in the Western Carpathians. Contrary to some other spring fens with similar site conditions in the Western Carpathians, few fen specialists established in the study sites since deforestation, presumably because of severe disturbances caused by grazing and/or hemp retting instead of the usual mowing.
Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic
Environmental change can be viewed as the combined result of long-term processes and singular events. While long-term trends appear to be readily available for observation (in the form of temporal comparisons or space-for-time substitution), it is more difficult to gain information on singular events in the past, although these can be equally significant in shaping ecosystems. We examined the past 700 years in the history of a lowland wetland landscape in the Czech Republic with the help of palaeoecological, ecological, landscape archaeological, and archival data. Macrofossil and pollen data were compared to known drainage works in the area and historical climatological data. Trends and events in habitat conditions were assessed using species indicator values. Results showed that ecological succession was the general process in the study area, detected as a trend towards eutrophication, desiccation, and vegetation closure. Short-term events influenced development at the sites mainly from the second half of the nineteenth century. This is consistent with drainage history, although bias related to sample frequency cannot be excluded. On the whole, long-term trends and discrete events were complementary on different scales. We conclude that humans facilitated and accelerated background processes, which can be most likely associated with the succession of open wetlands towards terrestrial ecosystems.
A case report of cholinergic rebound syndrome following abrupt low-dose clozapine discontinuation in a patient with type I bipolar affective disorder
Background Rebound cholinergic syndrome is a rare, but well known unwanted phenomenon occurring after abrupt clozapine discontinuation. There have been previous reported cases of cholinergic rebound in the literature; however, these reports described cholinergic rebound following cessation of high doses of clozapine in patients diagnosed with schizophrenia. Here, we report a case of rebound cholinergic syndrome and catatonia in a male patient three days after abrupt discontinuation of 50 mg of clozapine prescribed for type I bipolar affective disorder. Case presentation A 66-year old male of Spanish origin, treated for type I bipolar affective disorder for 15 years and for Crohn disease, was brought to the emergency department because of a sudden onset of mutism, dysphagia and trismus. He was described catatonic and presented hypertension, tachycardia and tachypnea. His body temperature was normal and the laboratory tests were unremarkable at presentation. A head CT and an EEG were in the normal range. While reviewing his history, it appeared the he was on clozapine 50 mg a day, first introduced 2 months ago, during a previous hospitalization for a manic episode resistant to other mood stabilizers. For an unknown reason, the patient’s psychiatrist stopped clozapine three days before the admission and replaced it by risperidone 5 mg and quetiapine 200 mg daily. A cholinergic rebound syndrome was then evoked. The patient’s ability to speak recovered dramatically and fast after the intravenous administration of 2.5 mg of biperiden supporting the diagnosis. Risperidone and quetiapine were also stopped. The patient fully recovered in 20 days after the reintroduction of 50 mg of clozapine and 2.5 mg of biperiden daily. Conclusions This case report underscores that cholinergic rebound syndrome may occur in patients suffering from bipolar affective disorders, being on clozapine as a mood stabilizer. The low dose clozapine does not preclude severe manifestations of the phenomenon. Progressive tapering should therefore be adopted in any case.
Non-Thermal Plasma—A New Green Priming Agent for Plants?
Since the earliest agricultural attempts, humankind has been trying to improve crop quality and yields, as well as protect them from adverse conditions. Strategies to meet these goals include breeding, the use of fertilisers, and the genetic manipulation of crops, but also an interesting phenomenon called priming or adaptive response. Priming is based on an application of mild stress to prime a plant for another, mostly stronger stress. There are many priming techniques, such as osmopriming, halopriming, or using physical agents. Non-thermal plasma (NTP) represents a physical agent that contains a mixture of charged, neutral, and radical (mostly reactive oxygen and nitrogen species) particles, and can cause oxidative stress or even the death of cells or organisms upon interaction. However, under certain conditions, NTP can have the opposite effect, which has been previously documented for many plant species. Seed surface sterilization and growth enhancement are the most-reported positive effects of NTP on plants. Moreover, some studies suggest the role of NTP as a promising priming agent. This review deals with the effects of NTP treatment on plants from interaction with seed and cell surface, influence on cellular molecular processes, up to the adaptive response caused by NTP.
Identification of Plasma-Generated Reactive Species in Water and Their DNA-Damaging Effects on Plasmid and Lymphocyte DNA
Non-thermal plasma has attracted strong interest in medicine and agriculture due to its ability to generate reactive oxygen and nitrogen species (RONS). These species can stimulate wound healing and seed germination, but at higher levels they induce DNA damage—useful in cancer therapy but harmful when healthy cells must be preserved. Direct study of DNA damage in cells is difficult because of repair processes and protective barriers. To address this, we applied a dual-model system combining plasmid DNA and human lymphocytes exposed to plasma from the RPS40 device. Using selective scavengers, we identified hydroxyl radicals, ozone, and reactive nitrogen species as key mediators of DNA strand breaks and structural changes. Our results support a mechanistic model in which long-lived plasma-derived species (NOx, ozone, acids) dissolve in water and subsequently generate short-lived radicals such as hydroxyl radicals and peroxynitrite. These reactive molecules then directly attack DNA. This integrated approach—linking plasmid and cellular assays with scavenger-based identification of RONS—offers a novel and cost-effective method for dissecting plasma–DNA interactions. The findings provide mechanistic insight into how plasma-activated water damages DNA, guiding the safer and more effective application of plasma technologies in biomedical and agricultural contexts.
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
The Effects of Cold Atmospheric Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley
Climate change, environmental pollution and pathogen resistance to available chemical agents are part of the problems that the food industry has to face in order to ensure healthy food for people and livestock. One of the promising solutions to these problems is the use of cold atmospheric pressure plasma (CAPP). Plasma is suitable for efficient surface decontamination of seeds and food products, germination enhancement and obtaining higher yields in agricultural production. However, the plasma effects vary due to plasma source, treatment conditions and seed type. In our study, we tried to find the proper conditions for treatment of barley grains by diffuse coplanar surface barrier discharge, in which positive effects of CAPP, such as enhanced germination or decontamination effects, would be maximized and harmful effects, such as oxidation and genotoxic potential, minimized. Besides germination parameters, we evaluated DNA damage and activities of various germination and antioxidant enzymes in barley seedlings. Plasma exposure resulted in changes in germination parameters and enzyme activities. Longer exposures had also genotoxic effects. As such, our findings indicate that appropriate plasma exposure conditions need to be carefully optimized in order to preserve germination, oxidation balance and genome stability, should CAPP be used in agricultural practice.
Genetic diversity of maize resources revealed by different molecular markers
Maize ( Zea mays L.) is the third most important cereal crop in the world because of its nutritional value and industrial benefits. Molecular markers are used mainly by the breeders to study the genetic variability of genotypes and its application in the breeding process. Two types of molecular markers, 10 random amplified polymorphic DNA (RAPD) primers and 10 start codon target (SCoT) primers, were assayed to determine the genetic diversity of 25 Slovak maize lines and 25 maize cultivars. A high level of polymorphism was found with both RAPD and SCoT markers, which was confirmed by high average polymorphism information content (PIC) values using both techniques. The efficiency of individual marker techniques in the detection of genotype diversity can be compared by calculating the marker index (MI), detecting diversity index (DDI), discriminating power, resolving power (RP) and other indices. A higher MI (11.788), DDI (2.358) and RP (53.08) value was achieved by the SCoT technique compared to the RAPD method. Three joint dendrograms and PCoA plots constructed based on RAPD, SCoT and both methods combined confirmed the unambiguous separation of maize lines and cultivars from each other. The results obtained from the RAPD and SCoT analysis can be used for the selection of potentially suitable biological sources for further marker-assisted breeding.
Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells
Secondary metabolites as a potential source of anticancer therapeutics have been the subject of many studies. Since hypericin, a metabolite isolated from Hypericum perforatum L., shows several biomedical properties applicable in oncology, the aim of our study was to investigate its potential precursor skyrin in terms of genotoxic and DNA-protective effects. These skyrin effects were analyzed by cell-free methods, and cytotoxicity was estimated by an MTT assay and by a trypan blue exclusion test, while the genotoxic/antigenotoxic potential was examined by comet assay using non-cancerous human lymphocytes and the HepG2 cancer cell line. Skyrin did not show DNA-damaging effects but rather exhibited DNA-protectivity using a DNA-topology assay. However, we observed only weak antioxidant and chelating skyrin properties in other cell-free methods. Regarding the cytotoxic activity of skyrin, HepG2 cells were more prone to skyrin-induced death in comparison to human lymphocytes. Skyrin in non-cytotoxic concentrations did not exhibit elevated genotoxicity in both cell types. On the other hand, skyrin displayed moderate DNA-protective effects that were more noticeable in the case of non-cancerous human lymphocytes. The potential genotoxic effects of skyrin were not observed, and its DNA-protective capacity was more prominent in non-cancerous cells. Therefore, skyrin might be a promising agent used in anticancer therapy.