Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Gómez-Varela, David"
Sort by:
Ultra-sensitive metaproteomics redefines the dark metaproteome, uncovering host-microbiome interactions and drug targets in intestinal diseases
2025
The functional characterization of host-gut microbiome interactions remains limited by the sensitivity of current metaproteomic approaches. Here, we present uMetaP, an ultra-sensitive workflow combining advanced LC-MS technologies with an FDR-validated de novo sequencing strategy, novoMP. uMetaP markedly expands functional coverage and improves the taxonomic detection limit of the gut dark metaproteome by 5000-fold, enabling precise detection and quantification of low-abundance microbial and host proteins. Applied to a mouse model of intestinal injury, uMetaP revealed host-microbiome functional networks underlying tissue damage, beyond genomic findings. Orthogonal validation using transcriptomic data from Crohn’s disease patients confirmed key host protein alterations. Furthermore, we introduce the concept of a druggable metaproteome, mapping functional targets within the host and microbiota. By redefining the sensitivity limits of metaproteomics, uMetaP provides a highly valuable framework for advancing microbiome research and developing therapeutic strategies for microbiome-related diseases.
The gut microbiome is key to health, yet its protein functions remain largely unexplored. Here, the authors present uMetaP, ultra-sensitive metaproteomics workflow that combines the timsTOF Ultra and FDR-validated de novo sequencing, boosting detection 5,000-fold and revealing gut inflammation targets.
Journal Article
Astroglial modulation of synaptic function in the non-demyelinated cerebellar cortex is dependent on MyD88 signaling in a model of toxic demyelination
by
Gómez-Varela, David
,
Fries, Franziska
,
Landt, Carolin
in
Animals
,
Astrocytes - metabolism
,
Astrocytes - pathology
2025
Progressive neurological decline in multiple sclerosis is associated with axonal loss and synaptic dysfunction in the non-demyelinated normal appearing gray matter (NAGM) and prominently in the cerebellum. In contrast to early disease stages, where synaptic and neuro-axonal pathology correlates with the extent of T cell infiltration, a prominent role of the innate immune system has been proposed for progressive MS. However, the specific contribution of microglia and astrocytes to synaptic cerebellar pathology in the NAGM– independent of an adaptive T cell response - remains largely unexplored. In the present study, we quantified synaptic changes in the cerebellar NAGM distant from demyelinated lesions in a mouse model of toxic demyelination. Proteomic analysis of the cerebellar cortex revealed differential regulation of synaptic and glutamate transport proteins in the absence of evident structural synaptic pathology or local gray matter demyelination. At the functional level, synaptic changes manifested as a reduction in frequency-dependent facilitation at the parallel fiber– Purkinje cell synapse. Further, deficiency of MyD88, an adaptor protein of the innate immune response, associated with a functional recovery in facilitation, reduced changes in the differential expression of synaptic and glutamate transport proteins, and reduced transcription levels of inflammatory cytokines. Nevertheless, the characteristics of demyelinating lesions and their associated cellular response were similar to wild type animals. Our work brings forward an experimental paradigm mimicking the diffuse synaptic pathology independent of demyelination in late stage MS and highlights the complex regulation of synaptic pathology in the cerebellar NAGM. Moreover, our findings suggest a role of astrocytes, in particular Bergmann glia, as key cellular determinants of cerebellar synaptic dysfunction.
Journal Article
Development and validation of COEWS (COVID-19 Early Warning Score) for hospitalized COVID-19 with laboratory features: A multicontinental retrospective study
by
Gómez-Varela, David
,
Valdez, Pascual Ruben
,
Mirofsky, Matias A
in
Blood pressure
,
Chronic obstructive pulmonary disease
,
COVID-19
2023
Background:The emergence of new SARS-CoV-2 variants with significant immune-evasiveness, the relaxation of measures for reducing the number of infections, the waning of immune protection (particularly in high-risk population groups), and the low uptake of new vaccine boosters, forecast new waves of hospitalizations and admission to intensive care units. There is an urgent need for easily implementable and clinically effective Early Warning Scores (EWSs) that can predict the risk of complications within the next 24–48 hr. Although EWSs have been used in the evaluation of COVID-19 patients, there are several clinical limitations to their use. Moreover, no models have been tested on geographically distinct populations or population groups with varying levels of immune protection.Methods:We developed and validated COVID-19 Early Warning Score (COEWS), an EWS that is automatically calculated solely from laboratory parameters that are widely available and affordable. We benchmarked COEWS against the widely used NEWS2. We also evaluated the predictive performance of vaccinated and unvaccinated patients.Results:The variables of the COEWS predictive model were selected based on their predictive coefficients and on the wide availability of these laboratory variables. The final model included complete blood count, blood glucose, and oxygen saturation features. To make COEWS more actionable in real clinical situations, we transformed the predictive coefficients of the COEWS model into individual scores for each selected feature. The global score serves as an easy-to-calculate measure indicating the risk of a patient developing the combined outcome of mechanical ventilation or death within the next 48 hr.The discrimination in the external validation cohort was 0.743 (95% confidence interval [CI]: 0.703–0.784) for the COEWS score performed with coefficients and 0.700 (95% CI: 0.654–0.745) for the COEWS performed with scores. The area under the receiver operating characteristic curve (AUROC) was similar in vaccinated and unvaccinated patients. Additionally, we observed that the AUROC of the NEWS2 was 0.677 (95% CI: 0.601–0.752) in vaccinated patients and 0.648 (95% CI: 0.608–0.689) in unvaccinated patients.Conclusions:The COEWS score predicts death or MV within the next 48 hr based on routine and widely available laboratory measurements. The extensive external validation, its high performance, its ease of use, and its positive benchmark in comparison with the widely used NEWS2 position COEWS as a new reference tool for assisting clinical decisions and improving patient care in the upcoming pandemic waves.Funding:University of Vienna.
Journal Article
Characterization of Eag1 Channel Lateral Mobility in Rat Hippocampal Cultures by Single-Particle-Tracking with Quantum Dots
by
Gómez-Varela, David
,
Schmidt, Manuela
,
Schäfer, Stephan
in
Actin
,
Actins - metabolism
,
Animals
2010
Voltage-gated ion channels are main players involved in fast synaptic events. However, only slow intracellular mechanisms have so far been described for controlling their localization as real-time visualization of endogenous voltage-gated channels at high temporal and spatial resolution has not been achieved yet. Using a specific extracellular antibody and quantum dots we reveal and characterize lateral mobility as a faster mechanism to dynamically control the number of endogenous ether-a-go-go (Eag)1 ion channels inside synapses. We visualize Eag1 entering and leaving synapses by lateral diffusion in the plasma membrane of rat hippocampal neurons. Mathematical analysis of their trajectories revealed how the motion of Eag1 gets restricted when the channels diffuse into the synapse, suggesting molecular interactions between Eag1 and synaptic components. In contrast, Eag1 channels switch to Brownian movement when they exit synapses and diffuse into extrasynaptic membranes. Furthermore, we demonstrate that the mobility of Eag1 channels is specifically regulated inside synapses by actin filaments, microtubules and electrical activity. In summary, using single-particle-tracking techniques with quantum dots nanocrystals, our study shows for the first time the lateral diffusion of an endogenous voltage-gated ion channel in neurons. The location-dependent constraints imposed by cytoskeletal elements together with the regulatory role of electrical activity strongly suggest a pivotal role for the mobility of voltage-gated ion channels in synaptic activity.
Journal Article
Deep proteome profiling reveals signatures of age and sex differences in paw skin and sciatic nerve of naïve mice
by
Schmidt, Manuela
,
Sondermann, Julia Regina
,
Xian, Feng
in
Age differences
,
Animal models
,
Animals
2022
The age and sex of studied animals profoundly impact experimental outcomes in biomedical research. However, most preclinical studies in mice use a wide-spanning age range from 4 to 20 weeks and do not assess male and female mice in parallel. This raises concerns regarding reproducibility and neglects potentially relevant age and sex differences, which are largely unknown at the molecular level in naïve mice. Here, we employed an optimized quantitative proteomics workflow in order to deeply profile mouse paw skin and sciatic nerves (SCN) – two tissues implicated in nociception and pain as well as diseases linked to inflammation, injury, and demyelination. Remarkably, we uncovered significant differences when comparing male and female mice at adolescent (4 weeks) and adult (14 weeks) age. Our analysis deciphered protein subsets and networks that were correlated with the age and/or sex of mice. Notably, among these were proteins/biological pathways with known (patho)physiological relevance, e.g., homeostasis and epidermal signaling in skin, and, in SCN, multiple myelin proteins and regulators of neuronal development. Extensive comparisons with available databases revealed that various proteins associated with distinct skin diseases and pain exhibited significant abundance changes in dependence on age and/or sex. Taken together, our study uncovers hitherto unknown sex and age differences at the level of proteins and protein networks. Overall, we provide a unique proteome resource that facilitates mechanistic insights into somatosensory and skin biology, and integrates age and sex as biological variables – a prerequisite for successful preclinical studies in mouse disease models.
Journal Article
Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor
by
Gómez-Varela, David
,
Miranda, Pablo
,
Manso, Diego G.
in
Amino Acid Sequence
,
Animals
,
Biomedical and Life Sciences
2009
Human
ether-a-go-go-
related gene (HERG) channels heterologously expressed in
Xenopus
oocytes are regulated by the activation of G protein-coupled hormone receptors that, like the thyrotropin-releasing hormone (TRH) receptor, activate phospholipase C. Previous work with serially deleted HERG mutants suggested that residues 326–345 located in the proximal domain of the channels amino terminus might be required for the hormonal modulation of HERG activation. Generation of new channel mutants deleted in this region further point to the amino acid sequence between residues 326 and 332 as a possible determinant of the TRH effects, but individual or combined single-point mutations in this sequence demonstrate that maintenance of its consensus sites for phosphorylation and/or interaction with regulatory components is not important for the modulatory response(s). The TRH-induced effects also remained unaltered when a basic amino acid cluster located between residues 362 and 366 is eliminated. Additionally, no effect of TRH was observed in channels carrying single-point mutations at the beginning of the intracellular loop linking transmembrane domains S4 and S5. Our results indicate that a correct structural arrangement of the amino terminal domains is essential for the hormone-induced modifications of HERG activation. They also suggest that the hormonal regulatory action is transmitted to the transmembrane channel core through interactions between the cytoplasmic domains and the initial portion of the S4–S5 linker.
Journal Article
Differential Effects of Amino-Terminal Distal and Proximal Domains in the Regulation of Human erg K + Channel Gating
by
Giráldez, Teresa
,
Gómez-Varela, David
,
de la Peña, Pilar
in
Amino Acid Sequence - genetics
,
Amino acids
,
Animals
2000
The participation of amino-terminal domains in human
ether-a-go-go (
eag)-
related gene (HERG) K
+ channel gating was studied using deleted channel variants expressed in
Xenopus oocytes. Selective deletion of the HERG-specific sequence (HERG Δ138–373) located between the conserved initial amino terminus (the
eag or PAS domain) and the first transmembrane helix accelerates channel activation and shifts its voltage dependence to hyperpolarized values. However, deactivation time constants from fully activated states and channel inactivation remain almost unaltered after the deletion. The deletion effects are equally manifested in channel variants lacking inactivation. The characteristics of constructs lacking only about half of the HERG-specific domain (Δ223–373) or a short stretch of 19 residues (Δ355–373) suggest that the role of this domain is not related exclusively to its length, but also to the presence of specific sequences near the channel core. Deletion-induced effects are partially reversed by the additional elimination of the
eag domain. Thus the particular combination of HERG-specific and
eag domains determines two important HERG features: the slow activation essential for neuronal spike-frequency adaptation and maintenance of the cardiac action potential plateau, and the slow deactivation contributing to HERG inward rectification.
Journal Article
Proteome and Network Analysis Provides Novel Insights Into Developing and Established Chemotherapy-Induced Peripheral Neuropathy
by
de Clauser, Larissa
,
Schmidt, Manuela
,
Flatters, Sarah J. L.
in
Animals
,
Cancer therapies
,
Chemotherapy
2022
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side-effect of cancer therapies. So far, the development of CIPN cannot be prevented, neither can established CIPN be reverted, often leading to the cessation of necessary chemotherapy. Thus, there is an urgent need to explore the mechanistic basis of CIPN to facilitate its treatment. Here we used an integrated approach of quantitative proteome profiling and network analysis in a clinically relevant rat model of paclitaxel-induced peripheral neuropathy. We analysed lumbar rat DRG at two critical time points: (1) day 7, right after cessation of paclitaxel treatment, but prior to neuropathy development (pre-CIPN); (2) 4 weeks after paclitaxel initiation, when neuropathy has developed (peak-CIPN). In this way we identified a differential protein signature, which shows how changes in the proteome correlate with the development and maintenance of CIPN, respectively. Extensive biological pathway and network analysis reveals that, at pre-CIPN, regulated proteins are prominently implicated in mitochondrial (dys)function, immune signalling, neuronal damage/regeneration, and neuronal transcription. Orthogonal validation in an independent rat cohort confirmed the increase of β-catenin (CTNNB1) at pre-CIPN. More importantly, detailed analysis of protein networks associated with β-catenin highlights translationally relevant and potentially druggable targets. Overall, this study demonstrates the enormous value of combining animal behaviour with proteome and network analysis to provide unprecedented insights into the molecular basis of CIPN. In line with emerging approaches of network medicine our results highlight new avenues for developing improved therapeutic options aimed at preventing and treating CIPN.
Journal Article
Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord
by
Barry, Allison M.
,
Schmidt, Manuela
,
Gomez-Varela, David
in
Bioinformatics
,
Chronic pain
,
DIA-MS
2018
To obtain a thorough understanding of chronic pain, large-scale molecular mapping of the pain axis at the protein level is necessary, but has not yet been achieved. We applied quantitative proteome profiling to build a comprehensive protein compendium of three regions of the pain neuraxis in mice: the sciatic nerve (SN), the dorsal root ganglia (DRG), and the spinal cord (SC). Furthermore, extensive bioinformatics analysis enabled us to reveal unique protein subsets which are specifically enriched in the peripheral nervous system (PNS) and SC. The immense value of these datasets for the scientific community is highlighted by validation experiments, where we monitored protein network dynamics during neuropathic pain. Here, we resolved profound region-specific differences and distinct changes of PNS-enriched proteins under pathological conditions. Overall, we provide a unique and validated systems biology proteome resource (summarized in our online database painproteome.em.mpg.de), which facilitates mechanistic insights into somatosensory biology and chronic pain-a prerequisite for the identification of novel therapeutic targets.
Journal Article