Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
13
result(s) for
"Gölz, Christina"
Sort by:
Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice
2023
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood–brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (
p
= 0.003), brain water content (
p
< 0.0001) and to stabilize BBB integrity (
p
= 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (
p
= 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (
p
= 0.027). At 5 dpi the number of Iba1-positive cells (
p
= 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Journal Article
Ribonuclease-1 treatment after traumatic brain injury preserves blood–brain barrier integrity and delays secondary brain damage in mice
2022
Traumatic brain injury (TBI) involves primary mechanical damage and delayed secondary damage caused by vascular dysfunction and neuroinflammation. Intracellular components released into the parenchyma and systemic circulation, termed danger-associated molecular patterns (DAMPs), are major drivers of vascular dysfunction and neuroinflammation. These DAMPs include cell-free RNAs (cfRNAs), which damage the blood–brain barrier (BBB), thereby promoting edema, procoagulatory processes, and infiltration of inflammatory cells. We tested the hypothesis that intraperitoneal injection of Ribonuclease-1 (RNase1, two doses of 20, 60, or 180 µg/kg) at 30 min and 12 h after controlled-cortical-impact (CCI) can reduce secondary lesion expansion compared to vehicle treatment 24 h and 120 h post-CCI. The lowest total dose (40 µg/kg) was most effective at reducing lesion volume (− 31% RNase 40 µg/kg vs. vehicle), brain water accumulation (− 5.5%), and loss of BBB integrity (− 21.6%) at 24 h post-CCI. RNase1 also reduced perilesional leukocyte recruitment (− 53.3%) and microglial activation (− 18.3%) at 120 h post-CCI, but there was no difference in lesion volume at this time and no functional benefit. Treatment with RNase1 in the early phase following TBI stabilizes the BBB and impedes leukocyte immigration, thereby suppressing neuroinflammation. RNase1-treatment may be a novel approach to delay brain injury to extend the window for treatment opportunities after TBI.
Journal Article
Proneurotrophin Binding to P75 Neurotrophin Receptor (P75ntr) Is Essential for Brain Lesion Formation and Functional Impairment after Experimental Traumatic Brain Injury
by
Engelhard, Kristin
,
Thal, Serge C.
,
Werner, Christian
in
Anesthesiology
,
Animals
,
Behavior, Animal
2015
Traumatic brain injury (TBI) initiates an excessive mediator release of e.g. neurotrophins, which promote neuronal survival, differentiation, and modulate synaptic plasticity. Paradoxically, mature forms of neurotrophins promote neuronal survival, whereas unprocessed forms of neurotrophins induce cell death through p75 neurotrophin receptor (p75NTR) signaling. p75NTR is widely expressed during synaptogenesis and is subsequently downregulated in adulthood. Repair mechanisms after acute cerebral insults can reactivate its expression. Therefore, the influence of p75NTR on secondary brain damage was addressed. mRNA levels of p75NTR and its ligands were quantified in brain tissue up to 7 days after experimental TBI (controlled cortical impact; CCI). Brain damage, motor function and inflammatory marker gene expression were determined in mice lacking the proneurotrophin-binding site of the p75NTR protein (NGFR-/-) and wild type littermates (NGFR+/+) 24 h and 5 days after CCI. In addition, the effect of TAT-Pep5 (pharmacological inhibitor of the intracellular p75NTR death domain) on lesion volume was evaluated 24 h after insult. p75NTR mRNA levels were induced nine-fold by TBI. In NGFR-/- mice, lesion volume was reduced by 29% at 24 h and by 21% 5 days after CCI. Motor coordination was significantly improved 24 h after trauma compared with the wild type. Pharmacological inhibition of the p75NTR signaling reduced lesion volume by 18%. The present study presents first time evidence that genetic mutation of the neurotrophin interaction site of p75NTR strongly limits post-traumatic cell death. In addition, we revealed pharmacological targeting of the intracellular p75NTR cell death domain as a promising approach to limit acute brain damage.
Journal Article
Pharmacologic Inhibition of ADAM10 Attenuates Brain Tissue Loss, Axonal Injury and Pro-inflammatory Gene Expression Following Traumatic Brain Injury in Mice
by
Appel, Dominik
,
Endres, Kristina
,
Hummel, Regina
in
ADAM10 (a disintegrin and metalloprotease 10)
,
Animals
,
axonal injury
2021
The α-secretase A disintegrin and metalloprotease 10 (ADAM10) regulates various physiological and pathophysiological processes. Despite its broad functional implications during development, plasticity, and disease, no pharmacological approaches to inhibit ADAM10 in acute brain injury have been reported. Here, we examined the effects of the ADAM10 inhibitor GI254023X on the neurological and histopathological outcome after experimental traumatic brain injury (TBI). C57BL/6N mice were subjected to the controlled cortical impact (CCI) model of TBI or sham procedure and received GI254023X or vehicle during the acute phase of injury ( n = 40, 100 mg/kg, 25% DMSO, 0.1 M Na 2 CO 3 , intraperitoneal, 30 min and 24 h after TBI). GI254023X treatment did not improve neurological deficits from 1 to 7 days post-injury (dpi) but animals treated with GI254023X exhibited smaller brain lesions compared to vehicle treatment. Determination of brain mRNA expression by quantitative PCR showed that TBI-induced up-regulation of Adam10 and Adam17 was not influenced by GI254023X but the up-regulation of the matrix metalloproteinase genes Mmp2 and Mmp9 was attenuated. GI254023X treatment further increased the T cell marker Cd247 but did not affect blood brain barrier integrity, as assessed by Occludin mRNA expression and IgG brain extravasation. However, in agreement with neuroprotective effects of ADAM10 inhibition, GI254023X treatment attenuated axonal injury, as indicated by decreased generation of spectrin breakdown products (SBDPs) and decreased immunostaining using anti-non-phosphorylated neurofilament (SMI-32). Interestingly, reduced axonal injury in GI254023X-treated animals coincided with subtle mRNA dysregulation in the glutamate receptor subunit genes Gria1 and Grin2b . Quantitative PCR also revealed that GI254023X mitigated up-regulation of the pro-inflammatory markers Il6 , Tnfa , and Lcn2 but not the up-regulation of the pan-microglia marker Aif1 , the M2 microglia marker Arg1 and the reactive astrocyte marker Gfap . Taken together, the ADAM10 inhibitor GI254023X attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression in the CCI model of TBI. These results suggest that ADAM10 may represent a therapeutic target in the acute phase of TBI.
Journal Article
Sequestosome 1 Deficiency Delays, but Does Not Prevent Brain Damage Formation Following Acute Brain Injury in Adult Mice
by
Bobkiewicz, Wiesia
,
Engelhard, Kristin
,
Sebastiani, Philipp G.
in
Animal cognition
,
Apoptosis
,
Autophagy
2017
Neuronal degeneration following traumatic brain injury (TBI) leads to intracellular accumulation of dysfunctional proteins and organelles. Autophagy may serve to facilitate degradation to overcome protein debris load and therefore be an important pro-survival factor. On the contrary, clearing may serve as pro-death factor by removal of essential or required proteins involved in pro-survival cascades. Sequestosome 1 (SQSTM1/p62) is a main regulator of the autophagic pathway that directs ubiquinated cargoes to autophagosomes for degradation. We show that SQSTM1 protein levels are suppressed 24 h and by trend 5 days after trauma. In line with these data the expression of
mRNA is reduced by 30% at day 3 after and stays depressed until day 5 after injury, indicating an impaired autophagy post controlled cortical impact (CCI). To determine the potential role of SQSTM1-dependent autophagy after TBI, mice lacking SQSTM1 (SQSTM1-KO) and littermates (WT) were subjected to CCI and brain lesion volume was determined 24 h and 5 days after insult. Lesion volume is 17% smaller at 24 h and immunoblotting reveals a reduction by trend of cell death marker αII-spectrin cleavage. But there is no effect on brain damage and cell death markers 5 days after trauma in SQSTM1-KO compared with WT. In line with these data neurofunctional testing does not reveal any differences. Additionally, gene expression of inflammatory (
α
, and
β) and protein degradation markers (
and
) were quantified by real-time PCR. Protein levels of LC3, BAG1, and BAG3 were analyzed by immunoblotting. Real-time PCR reveals minor changes in inflammatory marker gene expression and reduced
mRNA levels 5 days after trauma. Immunoblotting of autophagy markers LC3, BAG1, and BAG3 does not show any difference between KO and WT 24 h and 5 days after TBI. In conclusion, genetic ablation of SQSTM1-dependent autophagy leads to a delay but shows no persistent effect on post-traumatic brain damage formation. SQSTM1 therefore only plays a minor role for secondary brain damage formation and autophagic clearance of debris after TBI.
Journal Article
Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury
2017
The blood-brain barrier (BBB) is damaged during ischemic insults such as traumatic brain injury or stroke. This contributes to vasogenic edema formation and deteriorate disease outcomes. Enormous efforts are pursued to understand underlying mechanisms of ischemic insults and develop novel therapeutic strategies. In the present study the effects of PPARα agonist WY-14643 were investigated to prevent BBB breakdown and reduce edema formation. WY-14643 inhibited barrier damage in a mouse BBB
model of traumatic brain injury based on oxygen/glucose deprivation in a concentration dependent manner. This was linked to changes of the localization of tight junction proteins. Furthermore, WY-14643 altered phosphorylation of kinases ERK1/2, p38, and SAPK/JNK and was able to inhibit proteosomal activity. Moreover, addition of WY-14643 upregulated PAI-1 leading to decreased t-PA activity. Mouse
experiments showed significantly decreased edema formation in a controlled cortical impact model of traumatic brain injury after WY-14643 application, which was not found in PAI-1 knockout mice. Generally, data suggested that WY-14643 induced cellular responses which were dependent as well as independent from PPARα mediated transcription. In conclusion, novel mechanisms of a PPARα agonist were elucidated to attenuate BBB breakdown during traumatic brain injury
.
Journal Article
MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4
by
Hechler, Daniel
,
Vogt, Johannes
,
Kanneganti, Thirumala-Devi
in
Animals
,
Axons - immunology
,
Axons - pathology
2015
A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.
Journal Article
MHCII-independent CD4^sup +^ T cells protect injured CNS neurons via IL-4
by
Hechler, Daniel
,
Vogt, Johannes
,
Kanneganti, Thirumala-Devi
in
Antigens
,
Biomedical research
,
Colleges & universities
2015
A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4^sup +^ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4^sup +^ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.
Journal Article
Influence of time after extraction on the development of gingival invagination: study protocol for a multicenter pilot randomized controlled clinical trial
2013
Background
Gingival invaginations are a common side effect of orthodontic therapy involving tooth extraction and subsequent space closure. Consequences of gingival invaginations are a jeopardized stability of the space closure and hampered oral hygiene. In a retrospective study, the factor time until initiation of orthodontic space closure after tooth extraction has been identified as a potential risk factor for the development of gingival invaginations. The aim of this pilot study is to proof this hypothesis and to enable a caseload calculation for further clinical trials. The referring question is: is it possible to reduce the number of developing gingival invaginations by initiation of orthodontic space closure after tooth extraction at an early point of time?
Design
The intended pilot study is designed as a multicenter randomized controlled clinical trial, comparing the impact of two different time intervals from tooth extraction to initiation of orthodontic space closure on the development of gingival invaginations.
Forty participants, men and women in the age range of 11 to 30 years with orthodontically related indication for tooth extraction in the lower jaw, will be randomized 1:1 in one of two treatment groups. In group A the orthodontic tooth movement into the extraction area will be initiated in a time interval 2 to 4 weeks after tooth extraction. In group B the tooth movement will be initiated in a time interval >12 weeks after extraction. A possible effect of these treatment modalities on the development of gingival invaginations will be documented at the moment of space closure or 10 months +/- 14 days after initiation of space closure respectively, by clinical documentation of the primary (reduced number of gingival invagination) and the secondary endpoint (reduction of the severity of gingival invaginations).
Trial registration
Universal Trial Number U1111-1132-6655; German Clinical Trials Register
DRKS00004248
Journal Article