Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Gütschow, Johannes"
Sort by:
Realization of Paris Agreement pledges may limit warming just below 2 °C
Over the last five years prior to the Glasgow Climate Pact 1 , 154 Parties have submitted new or updated 2030 mitigation goals in their nationally determined contributions and 76 have put forward longer-term pledges. Quantifications of the pledges before the 2021 United Nations Climate Change Conference (COP26) suggested a less than 50 per cent chance of keeping warming below 2 degrees Celsius 2 – 5 . Here we show that warming can be kept just below 2 degrees Celsius if all conditional and unconditional pledges are implemented in full and on time. Peak warming could be limited to 1.9–2.0 degrees Celsius (5%–95% range 1.4–2.8 °C) in the full implementation case—building on a probabilistic characterization of Earth system uncertainties in line with the Working Group I contribution to the Sixth Assessment Report 6 of the Intergovernmental Panel on Climate Change (IPCC). We retrospectively project twenty-first-century warming to show how the aggregate level of ambition changed from 2015 to 2021. Our results rely on the extrapolation of time-limited targets beyond 2030 or 2050, characteristics of the IPCC 1.5 °C Special Report (SR1.5) scenario database 7 and the full implementation of pledges. More pessimistic assumptions on these factors would lead to higher temperature projections. A second, independent emissions modelling framework projected peak warming of 1.8 degrees Celsius, supporting the finding that realized pledges could limit warming to just below 2 degrees Celsius. Limiting warming not only to ‘just below’ but to ‘well below’ 2 degrees Celsius or 1.5 degrees Celsius urgently requires policies and actions to bring about steep emission reductions this decade, aligned with mid-century global net-zero CO 2 emissions. If all new and updated national climate change mitigation pledges stemming from the Paris Agreement are implemented in full and on time, then 21st-century warming could be limited to just below 2 degrees Celsius.
Double benefit of limiting global warming for tropical cyclone exposure
Tropical cyclone (TC) impacts are expected to worsen under continued global warming and socio-economic development. Here we combine TC simulations with an impact model to quantify country-level population exposure to TC winds for different magnitudes of global mean surface temperature increase and future population distributions. We estimate an annual global TC exposure increase of 26% (33 million people) for a 1 °C increase in global mean surface temperature, assuming present-day population. The timing of warming matters when additionally accounting for population change, with global population projected to peak around mid-century and decline thereafter. A middle-of-the-road socio-economic scenario combined with 2 °C of warming around 2050 increases exposure by 41% (52 million). A stronger mitigation scenario reaching 2 °C around 2100 limits this increase to 20% (25 million). Rapid climate action therefore avoids interference with peak global population timing and limits climate-change-driven exposure. Cumulatively, over 1.8 billion people could be saved by 2100.Tropical cyclone winds intensify with warming but the impacts depend on global population, which is likely to peak by mid-century and then decline. Impact modelling suggests that stronger mitigation, under which warming would peak after the population begins to decline, may spare 1.8 billion people from impacts by 2100.
National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850
Anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have made significant contributions to global warming since the pre-industrial period and are therefore targeted in international climate policy. There is substantial interest in tracking and apportioning national contributions to climate change and informing equitable commitments to decarbonisation. Here, we introduce a new dataset of national contributions to global warming caused by historical emissions of carbon dioxide, methane, and nitrous oxide during the years 1851–2021, which are consistent with the latest findings of the IPCC. We calculate the global mean surface temperature response to historical emissions of the three gases, including recent refinements which account for the short atmospheric lifetime of CH4. We report national contributions to global warming resulting from emissions of each gas, including a disaggregation to fossil and land use sectors. This dataset will be updated annually as national emissions datasets are updated.
Greenhouse gas emissions from food systems: building the evidence base
New estimates of greenhouse gas (GHG) emissions from the food system were developed at the country level, for the period 1990–2018, integrating data from crop and livestock production, on-farm energy use, land use and land use change, domestic food transport and food waste disposal. With these new country-level components in place, and by adding global and regional estimates of energy use in food supply chains, we estimate that total GHG emissions from the food system were about 16 CO2eq yr−1 in 2018, or one-third of the global anthropogenic total. Three quarters of these emissions, 13 Gt CO2eq yr−1, were generated either within the farm gate or in pre- and post-production activities, such as manufacturing, transport, processing, and waste disposal. The remainder was generated through land use change at the conversion boundaries of natural ecosystems to agricultural land. Results further indicate that pre- and post-production emissions were proportionally more important in developed than in developing countries, and that during 1990–2018, land use change emissions decreased while pre- and post-production emissions increased. We also report results on a per capita basis, showing world total food systems per capita emissions decreasing during 1990–2018 from 2.9 to 2.2 t CO2eq cap−1, with per capita emissions in developed countries about twice those in developing countries in 2018. Our findings also highlight that conventional IPCC categories, used by countries to report emissions in the National GHG inventory, systematically underestimate the contribution of the food system to total anthropogenic emissions. We provide a comparative mapping of food system categories and activities in order to better quantify food-related emissions in national reporting and identify mitigation opportunities across the entire food system.
Responsibility of major emitters for country-level warming and extreme hot years
The contributions of single greenhouse gas emitters to country-level climate change are generally not disentangled, despite their relevance for climate policy and litigation. Here, we quantify the contributions of the five largest emitters (China, US, EU-27, India, and Russia) to projected 2030 country-level warming and extreme hot years with respect to pre-industrial climate using an innovative suite of Earth System Model emulators. We find that under current pledges, their cumulated 1991–2030 emissions are expected to result in extreme hot years every second year by 2030 in twice as many countries (92%) as without their influence (46%). If all world nations shared the same fossil CO 2 per capita emissions as projected for the US from 2016–2030, global warming in 2030 would be 0.4 °C higher than under actual current pledges, and 75% of all countries would exceed 2 °C of regional warming instead of 11%. Our results highlight the responsibility of individual emitters in driving regional climate change and provide additional angles for the climate policy discourse.
Country-resolved combined emission and socio-economic pathways based on the Representative Concentration Pathway (RCP) and Shared Socio-Economic Pathway (SSP) scenarios
Climate policy analysis needs reference scenarios to assess emission targets and current trends. When presenting their national climate policies, countries often showcase their target trajectories against fictitious so-called baselines. These counterfactual scenarios are meant to present future greenhouse gas (GHG) emissions in the absence of climate policy. These so-called baselines presented by countries are often of limited use, as they can be exaggerated and as the methodology used to derive them is usually not transparent. Scenarios created by independent modeling groups using integrated assessment models (IAMs) can provide different interpretations of several socio-economic storylines and can provide a more realistic backdrop against which the projected target emission trajectory can be assessed. However, the IAMs are limited in regional resolution. This resolution is further reduced in intercomparison studies, as data for a common set of regions are produced by aggregating the underlying smaller regions. Thus, the data are not readily available for country-specific policy analysis. This gap is closed by downscaling regional IAM scenarios to the country level. The last of such efforts has been performed for the SRES (“Special Report on Emissions Scenarios”) scenarios, which are over a decade old by now. CMIP6 (Coupled Model Intercomparison Project phase 6) scenarios have been downscaled to a grid; however they cover only a few combinations of forcing levels and SSP storylines with only a single model per combination. Here, we provide up-to-date country scenarios, downscaled from the full RCP (Representative Concentration Pathway) and SSP (Shared Socio-Economic Pathway) scenario databases, using results from the SSP GDP (gross domestic product) country model results as drivers for the downscaling process. The data are available at https://doi.org/10.5281/zenodo.3638137 (Gütschow et al., 2020).
The PRIMAP-hist national historical emissions time series
To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data are needed. We combine several published datasets to create a comprehensive set of emissions pathways for each country and Kyoto gas, covering the years 1850 to 2014 with yearly values, for all UNFCCC member states and most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional time series of CO2 are available for energy and industry subsectors. Country-resolved data are combined from different sources and supplemented using year-to-year growth rates from regionally resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset, including its limitations and uncertainties. The dataset is available from doi:10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (http://www.pik-potsdam.de/primap-live/primap-hist/).
National contributions for decarbonizing the world economy in line with the G7 agreement
In June 2015, the G7 agreed to two global mitigation goals: 'a decarbonization of the global economy over the course of this century' and 'the upper end of the latest Intergovernmental Panel on Climate Change (IPCC) recommendation of 40%-70% reductions by 2050 compared to 2010'. These IPCC recommendations aim to preserve a likely (>66%) chance of limiting global warming to 2 °C but are not necessarily consistent with the stronger ambition of the subsequent Paris Agreement of 'holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels'. The G7 did not specify global or national emissions scenarios consistent with its own agreement. Here we identify global cost-optimal emissions scenarios from Integrated Assessment Models that match the G7 agreement. These scenarios have global 2030 emissions targets of 11%-43% below 2010, global net negative CO2 emissions starting between 2056 and 2080, and some exhibit net negative greenhouse gas emissions from 2080 onwards. We allocate emissions from these global scenarios to countries according to five equity approaches representative of the five equity categories presented in the Fifth Assessment Report of the IPCC (IPCCAR5): 'capability', 'equality', 'responsibility-capability-need', 'equal cumulative per capita' and 'staged approaches'. Our results show that G7 members' Intended Nationally Determined Contribution (INDCs) mitigation targets are in line with a grandfathering approach but lack ambition to meet various visions of climate justice. The INDCs of China and Russia fall short of meeting the requirements of any allocation approach. Depending on how their INDCs are evaluated, the INDCs of India and Brazil can match some equity approaches evaluated in this study.
PRIMAP-crf: UNFCCC CRF data in IPCC 2006 categories
All Annex I Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to report domestic emissions on an annual basis in a “Common Reporting Format” (CRF). In 2015, the CRF data reporting was updated to follow the more recent 2006 guidelines from the IPCC and the structure of the reporting tables was modified accordingly. However, the hierarchical categorisation of data in the IPCC 2006 guidelines is not readily extracted from the reporting tables. In this paper, we present the PRIMAP-crf data as a re-constructed hierarchical dataset according to the IPCC 2006 guidelines. Furthermore, the data are organised in a series of tables containing all available countries and years for each individual gas and category reported. It is therefore readily usable for climate policy assessment, such as the quantification of emissions reduction targets. In addition to single gases, the Kyoto basket of greenhouse gases (CO2, N2O, CH4, HFCs, PFCs, SF6, and NF3) is provided according to multiple global warming potentials. The dataset was produced using the PRIMAP emissions module. Key processing steps include extracting data from submitted CRF Excel spreadsheets, mapping CRF categories to IPCC 2006 categories, constructing missing categories from available data, and aggregating single gases to gas baskets. Finally, we describe key aspects of the data with relevance for climate policy: the contribution of NF3 to national totals, changes in data reported over subsequent years, and issues or difficulties encountered when processing currently available data. The processed data are available under an Open Data CC BY 4.0 license, and are available at https://doi.org/10.5880/pik.2018.001.
Pre- and Post-Production Processes Increasingly Dominate Greenhouse Gas Emissions From Agri-Food Systems
We present results from the FAOSTAT emissions shares database, covering emissions from agri-food systems and their shares to total anthropogenic emissions for 196 countries and 40 territories for the period 1990–2019. We find that in 2019, global agri-food system emissions were 16.5 (95 %; CI range: 11–22) billion metric tonnes (GtCO2 eq. yr(exp -1)), corresponding to 31%(range: 19 %–43 %) of total anthropogenic emissions. Of the agri-food system total, global emissions within the farm gate – from crop and livestock production processes including on-farm energy use – were 7.2 GtCO2 eq. yr(exp -1); emissions from land use change, due to deforestation and peatland degradation, were 3.5 GtCO2 eq. yr(exp -1); and emissions from pre- and post-production processes – manufacturing of fertilizers, food processing, packaging, transport, retail, household consumption and food waste disposal – were 5.8 GtCO2 eq. yr(exp -1). Over the study period 1990–2019, agri-food system emissions increased in total by 17 %, largely driven by a doubling of emissions from pre- and post-production processes. Conversely, the FAOSTAT data show that since 1990 land use emissions decreased by 25 %, while emissions within the farm gate increased 9 %. In 2019, in terms of individual greenhouse gases (GHGs), pre- and postproduction processes emitted the most CO2 (3.9 GtCO2 yr(exp -1)), preceding land use change (3.3 GtCO2 yr(exp -1)) and farm gate (1.2 GtCO2 yr(exp -1)) emissions. Conversely, farm gate activities were by far the major emitter of methane (140 MtCH4 yr(exp -1)) and of nitrous oxide (7.8 MtN2Oyr(exp -1)). Pre- and post-production processes were also significant emitters of methane (49 MtCH4 yr(exp -1)), mostly generated from the decay of solid food waste in landfills and open dumps. One key trend over the 30-year period since 1990 highlighted by our analysis is the increasingly important role of food-related emissions generated outside of agricultural land, in pre- and post-production processes along the agri-food system, at global, regional and national scales. In fact, our data show that by 2019, pre- and post-production processes had overtaken farm gate processes to become the largest GHG component of agri-food system emissions in Annex I parties (2.2 GtCO2 eq. yr(exp -1)). They also more than doubled in non-Annex I parties (to 3.5 GtCO2 eq. yr(exp -1)), becoming larger than emissions from land use change. By 2019 food supply chains had become the largest agri-food system component in China (1100 MtCO2 eq. yr(exp -1)), the USA (700 MtCO2 eq. yr(exp -1)) and the EU-27 (600 MtCO2 eq. yr(exp -1)). This has important repercussions for food-relevant national mitigation strategies, considering that until recently these have focused mainly on reductions of non-CO2 gases within the farm gate and on CO2 mitigation from land use change. The information used in this work is available as open data with DOI https://doi.org/10.5281/zenodo.5615082 (Tubiello et al., 2021d). It is also available to users via the FAOSTAT database (https://www.fao.org/faostat/en/#data/EM; FAO, 2021a), with annual updates.