Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
193 result(s) for "GREEN, ADAM W."
Sort by:
Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives
Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA) using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica) metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools) using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA) and available information to inform a formal decision process to determine optimal and timely management policies.
Quantifying specialist avifaunal decline in grassland birds of the Northern Great Plains
Habitat specialists are declining worldwide, often paralleling rapid loss of habitat. Grassland habitats across North America are declining precipitously, due in part to intense conversion of grasslands to agriculture and rangelands, and specialist communities reliant upon this landscape are at particular risk of decline and collapse. We explored the relationship between grassland habitat specialism in birds and species population trends using several different grassland specialism indices (GSIs). Our data sources for these indices included (1) a regional bird dataset employing a spatially stratified sampling design (Integrated Monitoring of Bird Conservation Regions) of bird surveys in the Northern Great Plains of North America, and (2) geospatial data of species ranges (BirdLife Int'l) and grassland habitat (CEC North American Land Cover). We found a negative relationship between degree of habitat specialism and species population trends for all specialism metrics. We also found some evidence to support that specialism to grasslands on the wintering grounds partially explains population trends during the breeding season, giving added weight to the consideration of habitat conservation across the full annual cycle of a species to reverse or lessen population decline. Our work is the first to use quantitative methods to confirm the precarious state of grassland specialist songbirds in North America as well as demonstrate multiple methods for quantifying habitat specialism across different types of datasets.
Investigating Impacts of Oil and Gas Development on Greater Sage-Grouse
The sagebrush (Artemisia spp.) ecosystem is one of the largest ecosystems in western North America providing habitat for species found nowhere else. Sagebrush habitats have experienced dramatic declines since the 1950s, mostly due to anthropogenic disturbances. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush-obligate species that has experienced population declines over the last several decades, which are attributed to a variety of disturbances including the more recent threat of oil and gas development. We developed a hierarchical, Bayesian state-space model to investigate the impacts of 2 measures of oil and gas development, and environmental and habitat conditions, on sage-grouse populations in Wyoming, USA using male lek counts from 1984 to 2008. Lek attendance of male sage-grouse declined by approximately 2.5%/year and was negatively related to oil and gas well density. We found little support for the influence of sagebrush cover and precipitation on changes in lek counts. Our results support those of other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species.
Landscape-scale conservation mitigates the biodiversity loss of grassland birds
The decline of biodiversity from anthropogenic landscape modification is among the most pressing conservation problems worldwide. In North America, long-term population declines have elevated the recovery of the grassland avifauna to among the highest conservationpriorities. Because the vast majority of grasslands of the Great Plains are privately owned, the recovery of these ecosystems and bird populations within them depend on landscape-scale conservation strategies that integrate social, economic, and biodiversity objectives. The Conservation Reserve Program (CRP) is a voluntary program for private agricultural producers administered by the United States Department of Agriculture that provides financial incentives to take cropland out of production and restore perennial grassland. We investigated spatial patterns of grassland availability and restoration to inform landscape-scale conservation for a comprehensive community of grassland birds in the Great Plains. The research objectives were to (1) determine how apparent habitat loss has affected spatial patterns of grassland bird biodiversity, (2) evaluate the effectiveness of CRP for offsetting the biodiversity declines of grassland birds, and (3) develop spatially explicit predictions to estimate the biodiversity benefit of adding CRP to landscapes impacted by habitat loss. We used the Integrated Monitoring in Bird Conservation Regions program to evaluate hypotheses for the effects of habitat loss and restoration on both the occupancy and species richness of grassland specialists within a continuum-modeling framework. We found the odds of community occupancy declined by 37% for every 1 SD decrease in grassland availability [loge(km²)] and increased by 20% for every 1 SD increase in CRP land cover [loge(km²)]. There was 17% turnover in species composition between intact grasslands and CRP landscapes, suggesting that grasslands restored by CRP retained considerable, but incomplete, representation of biodiversity in agricultural landscapes. Spatially explicit predictions indicated that absolute conservation outcomes were greatest at high latitudes in regions with high biodiversity, whereas the relative outcomes were greater at low latitudes in highly modified landscapes. By evaluating community-wide responses to landscape modification and CRP restoration at bioregional scales, our study fills key information gaps for developing collaborative strategies, and for balancing conservation of avian biodiversity and social well-being in the agricultural production landscapes of the Great Plains.
Co-Occurrence and Occupancy of Mourning Doves and Eurasian Collared-Doves
Understanding how land cover and potential competition with invasive species shape patterns of occupancy, extirpation, and colonization of native species across a landscape can help target management for declining native populations. Mourning dove (Zenaida macroura) populations have declined throughout the United States from 1965–2015. The expansion of the Eurasian collared-dove (Streptopelia decaocto), an introduced species with similar food preferences, may further threaten mourning dove populations. We analyzed data from 2009–2016 from a large-scale monitoring program in the Western Great Plains of the United States in a 2-species occupancy model to assess the effects of collared-doves on mourning dove distributions, while accounting for imperfect detection and variation in land cover across the landscape. Mourning dove occupancy was stable or increasing across our study area, and despite overlap in resource use and co-occurrence between mourning doves and Eurasian collared-doves, we found no evidence that collared-doves are extirpating mourning doves from preferred habitat during the breeding season.
A dynamic multi‐scale occupancy model to estimate temporal dynamics and hierarchical habitat use for nomadic species
Distribution models are increasingly being used to understand how landscape and climatic changes are affecting the processes driving spatial and temporal distributions of plants and animals. However, many modeling efforts ignore the dynamic processes that drive distributional patterns at different scales, which may result in misleading inference about the factors influencing species distributions. Current occupancy models allow estimation of occupancy at different scales and, separately, estimation of immigration and emigration. However, joint estimation of local extinction, colonization, and occupancy within a multi‐scale model is currently unpublished. We extended multi‐scale models to account for the dynamic processes governing species distributions, while concurrently modeling local‐scale availability. We fit the model to data for lark buntings and chestnut‐collared longspurs in the Great Plains, USA, collected under the Integrated Monitoring in Bird Conservation Regions program. We investigate how the amount of grassland and shrubland and annual vegetation conditions affect bird occupancy dynamics and local vegetation structure affects fine‐scale occupancy. Buntings were prevalent and longspurs rare in our study area, but both species were locally prevalent when present. Buntings colonized sites with preferred habitat configurations, longspurs colonized a wider range of landscape conditions, and site persistence of both was higher at sites with greener vegetation. Turnover rates were high for both species, quantifying the nomadic behavior of the species. Our model allows researchers to jointly investigate temporal dynamics of species distributions and hierarchical habitat use. Our results indicate that grassland birds respond to different covariates at landscape and local scales suggesting different conservation goals at each scale. High turnover rates of these species highlight the need to account for the dynamics of nomadic species, and our model can help inform how to coordinate management efforts to provide appropriate habitat configurations at the landscape scale and provide habitat targets for local managers. We combined multi‐scale and dynamic occupancy models to jointly estimate dynamic processes governing species distributions, while concurrently modeling local‐scale availability, and we applied this model to data collected on two nomadic grassland birds, the lark bunting and chestnut‐collared longspur, in the Northern Great Plains of the U.S. Our results suggest that both species expand into less ideal habitats and contract from those sites first, and high turnover rates imply that these species may benefit from coordinated, landscape‐level management efforts.
Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model
1. World-wide declines in amphibian populations are often attributed to loss of habitat and exploitation; additionally, climate change may play an important role in future declines. Despite protection of habitat, amphibians relying on temporary habitats, such as vernal pools, may need active management to maintain their populations under forecasts of warming temperatures and more variable precipitation. However, few studies have examined the factors influencing where these species choose to breed (breeding occurrence) and the conditional likelihood of successful metamorphosis, while accounting for imperfect detection. 2. We developed an occupancy model and estimated parameters within a Bayesian framework to investigate the factors influencing probabilities of wood frog Lithobates sylvatica breeding and successful metamorphosis at Patuxent Research Refuge, Maryland, USA. Our objectives were to obtain estimates of breeding occurrence and metamorph occupancy and evaluate the success of current management actions. 3. The probabilities of wood frog breeding and successful metamorphosis varied by year and were positively related to the pond's typical hydroperiod length and annual precipitation. Contrary to our predictions, previous occupancy states had little effect on breeding and metamorph occupancy probabilities, which is likely to be due to high correlation of occupancy with hydroperiod length. Additionally, we did not observe a relationship between breeding occupancy probabilities and the spatial arrangement of pools. Although sample sizes were small, management actions resulted in an increase in both breeding and metamorph occupancy probabilities. 4. Synthesis and applications. We demonstrate that management actions targeting short-hydroperiod pools favourably influence both components of breeding success. However, continued monitoring is needed to determine whether managed pools remain suitable for wood frogs. With predicted changes in climate and a positive relationship between breeding occupancy and winter precipitation, a proactive focus on active management of vernal pools may provide a means to maintain wood frog populations in the future.
Reproductive strategy and carry-over effects for species with complex life histories
We investigated the influences of natal-pool and metamorph characteristics on juvenile survival, age-specific breeding probabilities, and dispersal of wood frogs ( Lithobates sylvatica ) and used this information to infer how life history strategies of short-lived species may offset risks associated with breeding in highly variable habitats. We used multistate mark-recapture data from eight wood frog populations in Maryland, USA, to investigate the influences of natal-pond and metamorph characteristics on post-metamorphic demographics. We found that post-metamorphic juvenile survival was highly variable and negatively influenced by abiotic conditions experienced during development but showed little relationship to larval density or size at metamorphosis. Estimates of recruitment and dispersal probabilities indicated that males mature earlier than females, and a small percentage of each sex disperse to non-natal pools. Survival probabilities for adults during the non-breeding season were less variable than juvenile rates, lower for females, and negatively related to mean monthly precipitation. Survival of adults during the breeding season was generally very high. We provide the first robust estimates of post-metamorphic vital rates of wood frogs that allow for variation in capture probabilities. We found little evidence for an effect of metamorph traits on juvenile survival, suggesting that wood frogs may be able to overcome initial disadvantages to have similar post-metamorphic performance. Our study suggests that variation in the age of maturity for wood frogs may mitigate risks associated with breeding in a highly variable habitat to maximize lifetime fitness without increasing lifespan, and this strategy is minimally affected by carry-over effects from the larval stage.
Exploring sensitivity of a multistate occupancy model to inform management decisions
1. Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. 2. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). 3. In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. 4. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates.