Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
439 result(s) for "Gabrielli, Andrea"
Sort by:
A New Metrics for Countries' Fitness and Products' Complexity
Classical economic theories prescribe specialization of countries industrial production. Inspection of the country databases of exported products shows that this is not the case: successful countries are extremely diversified, in analogy with biosystems evolving in a competitive dynamical environment. The challenge is assessing quantitatively the non-monetary competitive advantage of diversification which represents the hidden potential for development and growth. Here we develop a new statistical approach based on coupled non-linear maps, whose fixed point defines a new metrics for the country Fitness and product Complexity. We show that a non-linear iteration is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We show that, given the paradigm of economic complexity, the correct and simplest approach to measure the competitiveness of countries is the one presented in this work. Furthermore our metrics appears to be economically well-grounded.
Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products
We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation.
Systemic Risk Analysis on Reconstructed Economic and Financial Networks
We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems.
Randomizing bipartite networks: the case of the World Trade Web
Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.
The statistical physics of real-world networks
In the past 15 years, statistical physics has been successful as a framework for modelling complex networks. On the theoretical side, this approach has unveiled a variety of physical phenomena, such as the emergence of mixed distributions and ensemble non-equivalence, that are observed in heterogeneous networks but not in homogeneous systems. At the same time, thanks to the deep connection between the principle of maximum entropy and information theory, statistical physics has led to the definition of null models for networks that reproduce features of real-world systems but that are otherwise as random as possible. We review here the statistical physics approach and the null models for complex networks, focusing in particular on analytical frameworks that reproduce local network features. We show how these models have been used to detect statistically significant structural patterns in real-world networks and to reconstruct the network structure in cases of incomplete information. We further survey the statistical physics models that reproduce more complex, semilocal network features using Markov chain Monte Carlo sampling, as well as models of generalized network structures, such as multiplex networks, interacting networks and simplicial complexes.This Review describes advances in the statistical physics of complex networks and provides a reference for the state of the art in theoretical network modelling and applications to real-world systems for pattern detection and network reconstruction.
Detecting early signs of the 2007–2008 crisis in the world trade
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008–2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995–2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles.
The Scientific Competitiveness of Nations
We use citation data of scientific articles produced by individual nations in different scientific domains to determine the structure and efficiency of national research systems. We characterize the scientific fitness of each nation-that is, the competitiveness of its research system-and the complexity of each scientific domain by means of a non-linear iterative algorithm able to assess quantitatively the advantage of scientific diversification. We find that technological leading nations, beyond having the largest production of scientific papers and the largest number of citations, do not specialize in a few scientific domains. Rather, they diversify as much as possible their research system. On the other side, less developed nations are competitive only in scientific domains where also many other nations are present. Diversification thus represents the key element that correlates with scientific and technological competitiveness. A remarkable implication of this structure of the scientific competition is that the scientific domains playing the role of \"markers\" of national scientific competitiveness are those not necessarily of high technological requirements, but rather addressing the most \"sophisticated\" needs of the society.
Inferring monopartite projections of bipartite networks: an entropy-based approach
Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users' ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.
A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy
In this paper we analyze the bipartite network of countries and products from UN data on country production. We define the country-country and product-product projected networks and introduce a novel method of filtering information based on elements' similarity. As a result we find that country clustering reveals unexpected socio-geographic links among the most competing countries. On the same footings the products clustering can be efficiently used for a bottom-up classification of produced goods. Furthermore we mathematically reformulate the \"reflections method\" introduced by Hidalgo and Hausmann as a fixpoint problem; such formulation highlights some conceptual weaknesses of the approach. To overcome such an issue, we introduce an alternative methodology (based on biased Markov chains) that allows to rank countries in a conceptually consistent way. Our analysis uncovers a strong non-linear interaction between the diversification of a country and the ubiquity of its products, thus suggesting the possible need of moving towards more efficient and direct non-linear fixpoint algorithms to rank countries and products in the global market.
Capability accumulation patterns across economic, innovation, and knowledge-production activities
The evolution of economic and innovation systems at the national scale is shaped by a complex dynamics related to the multi-layer network connecting countries to the activities in which they are proficient. Each layer represents a different domain, related to the production of knowledge and goods: scientific research, technology innovation, industrial production and trade. Nestedness, a footprint of a complex dynamics, emerges as a persistent feature across these multiple kinds of activities (i.e. network layers). We observe that, in the layers of innovation and trade, the competitiveness of countries correlates unambiguously with their diversification, while the science layer shows some peculiar features. The evolution of the scientific domain leads to an increasingly modular structure, in which the most developed countries become relatively less active in the less advanced scientific fields, where emerging countries acquire prominence. This observation is in line with a capability-based view of the evolution of economic systems, but with a slight twist. Indeed, while the accumulation of specific know-how and skills is a fundamental step towards development, resource constraints force countries to acquire competitiveness in the more complex research fields at the expense of more basic, albeit less visible (or more crowded) ones. This tendency towards a relatively specialized basket of capabilities leads to a trade-off between the need to diversify in order to evolve and the need to allocate resources efficiently. Collaborative patterns among developed countries reduce the necessity to be competitive in the less sophisticated research fields, freeing resources for the more complex ones.