Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Gai, Xiao-Ling"
Sort by:
Study on Acoustic Properties of Helmholtz-Type Honeycomb Sandwich Acoustic Metamaterials
In order to improve the acoustic performance of honeycomb sandwich structures, a Helmholtz-type honeycomb sandwich acoustic metamaterial (HHSAM) was proposed. The theoretical and finite element models were established by calculating the acoustic impedance of multiple parallel Helmholtz resonators (HR). By comparing the sound absorption of the single and multiple HR, it was found that the simulation results were basically consistent with the theoretical calculations. The sound absorption and insulation performance of the honeycomb panels, the honeycomb perforated panels, and the HHSAM structure were compared through impedance tube experiments. The results showed that, over a wide frequency range, the acoustic performance of the HHSAM structure was superior to that of the other two structures. Under scattered sound field conditions, the reverberation room results showed that the sound absorption of the HHSAM structure was better than that of the honeycomb panel in the frequency range of 100–5000 Hz. The noise reduction coefficient (NRC) of the honeycomb panel was 0.1, indicating almost no sound absorption effect in engineering. The NRC of the HHSAM structure could reach 0.35. In terms of sound insulation, the HHSAM structure was more prominent in the 400–4000 Hz range than the honeycomb panel. In the frequency range of 500–1600 Hz, the transmission loss of the HHSAM was 5 dB higher than that of the honeycomb panel.
Extended double Wronskian solutions to the Whitham–Broer–Kaup equations in shallow water
Whitham–Broer–Kaup (WBK) equations describing the propagation of shallow-water waves, with a variable transformation, are transformed into a generalized Ablowitz–Kaup–Newell–Segur system, the bilinear forms of which are obtained via the rational transformations. Employing the matrix extension and symbolic computation, we derive types of solutions of the WBK equations through the selection of different canonical matrices, including solitons, rational solutions, and complexitons. Furthermore, dynamic properties of the solutions are discussed graphically and a novel phenomenon is observed, i.e., the coexistence of the elastic–inelastic interactions without disturbing each other.
Soliton-shape-preserving and soliton-complex interactions for a (1+1)-dimensional nonlinear dispersive-wave system in shallow water
Under investigation in this paper is a (1+1)-dimensional nonlinear dispersive-wave system for the long gravity waves in shallow water. With symbolic computation, we derive the multi-soliton solutions for the system. Four sorts of interactions for the system are discussed: (1) Soliton shape preserving, in which two solitons undergo the fusion behavior while the amplitudes and velocities of the other two remain unchanged during the interaction process; (2) Head-on collisions between the two-soliton complexes; (3) Overtaking collisions between the two-soliton complexes; (4) Two-soliton complexes formed by the inelastic collisions. Such soliton structures might be of certain value in fluid dynamics.
Sound Absorption Analysis of Micro Perforated Panel with Ladder Change Type Cross Section
A kind of variable cross section micro perforated panel (MPP) with ladder micro porous is introduced in this paper. Based on the double layers MPP theory and neglected the effect of cavity between two layers of MPP, sound absorption model of MPP with ladder micro porous is established. Numerical simulations are carried out to predict the sound absorption of MPP with ladder micro porous. The predicted results show good agreement with measurements. Through analyzing the weight to the sound-absorbing of orifice size, this study also points out that the smaller orifices play the major role in the sound absorption.
Reseach Progess of Microperforated Panel Absorber
Microperforated panel (MPP) absorbers have been developed rapidly and used in many fields in recent years. First, based on the Maa’s theory, the theoretical development of MPP is reviewed in this paper. Furthermore, structure design and processing technology of MPP are introduced. Finally, the further development of MPP is discussed.
Modeling of Perforated Screens or Membrane Using Rigid Frame Porous Models Combined with Thin Membrane Resonance Sound Absorbing Theory
The sound absorption ability of screen or perforated membrane is studied based on rigid frame porous models combined with thin membrane resonance sound absorbing theory in this paper. Results show that the sound absorption of screen or perforated membrane is better considering the role of membrane than using the rigid frame porous models when the mass density of screen or perforated membrane is smaller. The rigid frame porous model is very accuracy to model the sound absorption ability of screen or perforated membrane when the mass density of membrane is greater. The parameter studies present that the sound absorption peaks move toward low frequency region with the increasing of the depth of air-back cavity, mass density and thickness of screens or perforated membrane and moves toward high frequency region with the increasing of the perforation and perforated radius of screens or perforated membrane when other parameters keep invariant.
Anti-angiogenesis effect of generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide on breast cancer in vitro
Objective: To study the effects of the generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide (G4PAMAM/VEGFASODN) compound on the expressions of vascular endothelial growth factor (VEGF) and its mRNA of breast cancer cells and on the inhibition of vascular endothelial cells. Methods: We examined the morphology of G4PAMAM/VEGFASODN compound and its pH stability, in vitro transfection efficiency and toxicity, and the expressions of VEGF and its mRNA. Methyl thiazolyl tetrazolium assay was used to detect the inhibitory function of the compound on vascular endothelial cells. Results: The compound was about 10 nm in diameter and was homogeneously netlike. From pH 5 to 10, it showed quite a buffered ability. The 48-h transfection rate in the charge ratio of 1:40 was 98.76%, significantly higher than that of the liposome group (P〈0.05). None of the transfection products showed obvious toxicity on the cells. The expressions of both VEGF protein and its mRNA after G4PAMAM/VEGFASODN transfection decreased markedly. Conclusion: With a low toxicity, high safety, and high transfection rate, G4PAMAM/VEGFASODN could be a promising gene vector. Specifically, it inhibits VEGF gene expression efficiently, laying a basis for further in vivo animal studies.
Effects of plant population density and root-induced cytokinin on the corn compensatory growth during post-drought rewatering
The effect of plant population density (PPD) and root-induced leaf cytokinin on the compensatory growth of potted corn seedlings during post-drought rewatering was investigated. The study design comprised four treatments: (1) wetness with low PPD, (2) wetness with high PPD, (3) rewatering with low PPD, and (4) rewatering with high PPD. Results showed that drought stress restrained the growth of corns. By contrast, rewatering enhanced the net photosynthetic rate and growth of corns. During the 8 days of rewatering, compensatory growth during post-drought rewatering occurred in corns with high PPD; however, such compensatory growth did not occur in corns with low PPD. Zeatin riboside concentrations in leaves and xylem saps were significantly higher under rewatering treatment than those under wet treatment. High leaf cytokinin concentration accelerated corn growth. The coefficients of variation and Gini-coefficient of wet treatment were significantly higher than those of rewatering treatment under high PPD, demonstrating that intense intraspecific competition occurred in the wet treatment. Extreme intraspecific competition negatively affected net photosynthetic rate. In brief, the interactions between root-induced leaf cytokinin and weak intraspecific competition promoted the compensatory growth under high PPD.
Mutation of a Cuticular Protein, BmorCPR2 , Alters Larval Body Shape and Adaptability in Silkworm, Bombyx mori
Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.
Effects of leaf zeatin and zeatin riboside induced by different clipping heights on the regrowth capacity of ryegrass
The effect of clipping height on ryegrass regrowth was investigated by examining the roles of several plant hormones. Our study consisted of three treatment conditions: (1) darkness over whole plants, (2) darkness only over stubble leaf sheaths, and (3) light over whole plants. Results showed that under darkness over whole plant, low stubble height resulted in low leaf regrowth biomass. Similar leaf regrowth biomass was observed under conditions of darkness only over stubble leaf sheaths as well as light over whole plants. Each unit weight of stubble at different clipping heights has relatively similar potential of providing stored organic substance for leaf regrowth. Therefore, regrowth index, calculated as newly grown leaf biomass divided by unit stubble weight, was used to evaluate regrowth capacity at different clipping heights under minimal influence of organic substances stored in stubbles. Under light over whole plants and single clipping, low stubble height and high stubble height with root thinning resulted in low leaf biomass and high regrowth index. On the other hand, under light over whole plants and frequent clipping high leaf biomass and regrowth index were observed in high stubble height. In addition, we found that leaf zeatin and zeatin riboside (Z + ZR) affected ryegrass regrowth and that roots regulated leaf Z + ZR concentration. Thus, our results indicate that root-derived cytokinin concentration in leaves influences ryegrass regrowth at different clipping heights.