Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
100 result(s) for "Galehdari Hamid"
Sort by:
The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation
Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme’s finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.
NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease
A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway—Ribosome-associated Quality Control (RQC)—by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF’s role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration. Defective protein quality control is a key feature of neurodegeneration. Here, the authors show that mutations in Nemf/NEMF , a component of the Ribosome-associated Quality Control complex, have a neurodegenerative effect in mice and may underlie neuromuscular disease in seven unrelated families.
Genotype–phenotype correlation in patients with deletional and nondeletional mutations of Hb H disease in Southwest of Iran
We studied the alpha-globin gene genotypes, hematologic values, and transfusion-dependence of patients with Hb H disease. Molecular characterization of alpha-thalassemia was performed. We identified 120 patients with Hb H disease. Of these patients, 35 (29.16%) had deletional form of Hb H disease, and 85 (70.83%) had different form of non-deletional Hb H disease. The most frequently observed Hb H genotypes were -- Med /–α 3.7 in 33 patients (27.5%), α CD19(-G) α /αCD19(-G) α in 25 cases (20.83%), α polyA2 α/α polyA2 α in 15 (12.5%), and α polyA1 α/α polyA1 α in 13 (10.83%) respectively. The probability of receiving at least one transfusion blood in deletional form was observed in 3 of 35 (8.57%) patients which just seen in 3 of 33 (9%) patients with -- Med /–α 3.7 genotype. This form was also observed in 8 of 85 (9.4%) patients in non-deletional Hb H diseases which five of them had Med deletion in compound with alpha globin point mutations. Nondeletional Hb H disease was more severe than deletional Hb H disease requiring more blood transfusions. We can recommend that Med deletion in compound with alpha-globin point mutations, polyA1 and constant spring in homozygous form needs to be taken into consideration when offering counseling to high-risk couples.
Association of sperm protamine1 and protamine2 transcript content with paternal age: A cross-sectional study
Background: Over the last decade, there has been a significant increase in average paternal age. Objective: The present study investigated the effects of male age on sperm parameters, DNA fragmentation, and protamine1 (PRM1) and protamine2 (PRM2) transcript content in normozoospermic men. Materials and Methods: In this cross-sectional study, 106 semen samples from normozoospermic men were obtained. The objects were divided into 3 age groups: 20–25, 30–35, and 40–45 yr. Sperm parameters and DNA fragmentation were assessed, and transcript levels of PRM1 and PRM2 were analyzed in ejaculated spermatozoa. Results: The highest levels of sperm concentration, motility, and normal morphology were observed in men aged between 20 and 25 yr. Significant declines were seen in sperm total motility (p = 0.006) and normal morphology (p = 0.015) after 40 yr compared to younger men. Significantly (p < 0.001) higher levels of DNA damage were seen in 40–45-yr-old men. DNA fragmentation correlated significantly with sperm total motility (r = -0.242, p = 0.012) and normal morphology (r = -0.257, p = 0.008). The lowest levels of PRM1 and PRM2 transcripts were seen in 40–45-yr-old men. DNA damage was significantly associated with reduced transcript levels of PRM1 (r = -0.453, p = 0.018) and PRM2 (r = -0.492, p = 0.009). Transcript levels of PRM1 and PRM2 in ejaculated spermatozoa were correlated significantly with the age of men. Conclusion: Our findings demonstrate age-related changes in sperm PRM1 and PRM2 transcript content and their correlations with sperm parameters and DNA fragmentation.
Terminal Peptide Extensions Augment the Retinal IMPDH1 Catalytic Activity and Attenuate the ATP-induced Fibrillation Events
Defects in inosine monophosphate dehydrogenase-1 (IMPDH1) lead to insufficient biosyntheses of purine nucleotides. In eyes, these defects are believed to cause retinitis pigmentosa (RP). Major retinal isoforms of IMPDH1 are structurally distinct from those in other tissues, by bearing terminal extensions. Using recombinant mouse IMPDH1 (mH1), we evaluated the kinetics and oligomerization states of the retinal isoforms. Moreover, we adopted molecular simulation tools to study the possible effect of terminal tails on the function of major enzyme isoforms with the aim to find structural evidence in favor of contradictory observations on retinal IMPDH1 function. Our findings indicated higher catalytic activity for the major mouse retinal isoform (mH1603) along with lower fibrillation capacity under the influence of ATP. However, higher mass oligomerization products were formed by the mH1 (603) isoform in the presence of the enzyme inhibitors such as GTP and/or MPA. Collectively, our findings demonstrate that the structural differences between the retinal isoforms have led to functional variations possibly to justify the retinal cells’ requirements.
High incidence of AZF duplications in clan-structured Iranian populations detected through Y chromosome sequencing read depth analysis
The ampliconic region of the human Y chromosome consists of large duplicated sequences that can undergo non-allelic homologous recombination (NAHR), resulting in structural rearrangements that may cause infertility, especially when they occur in the azoospermia factor b/c (AZFb/c) region. Although AZF duplications have long been neglected due to the technical limitations of STS-based studies that focused mainly on deletions, recent next generation sequencing (NGS) technologies provided evidence for their importance in fertility. In this study, a NGS read depth approach was used to detect AZFb/c rearrangements in 87 Iranians from different ethnic groups. The duplication frequency in Iran proved to be twice as high as in the \"1000 Genomes\" dataset. Interestingly, most duplications were found in patrilineal ethnic groups, possibly as a consequence of their lower male effective population size which can counteract negative selection. Moreover, we found a large 8.0 Mb duplication, resulting in a fourfold increase in the copy number of AZFc genes, which to our knowledge is the largest duplication ever reported in this region. Overall, our results suggest that it is important to consider not only AZF deletions but also duplications to investigate the causes of male infertility, especially in patrilineal clan-based populations.
Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
Adenosine diphosphate (ADP)‐ribosylation is a post‐translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP‐ribosylation reactions are the poly(ADP‐ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP‐ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP‐ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP‐ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP‐interacting protein that removes mono(ADP‐ribosyl)ation on glutamate amino acid residues in PARP‐modified proteins. X‐ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl‐(ADP‐ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP‐ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. Crystal structure and biochemical data reveal a gene mutated in patients with severe neurodegeneration to encode an elusive enzyme for removing ADP‐ribose from proteins.
Autosomal recessive cardiomyopathy and sudden cardiac death associated with variants in MYL3
Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood–onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.
Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy
BackgroundAdenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects.MethodsWe studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing.ResultsAll patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity.ConclusionIn conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.
Wound healing activity of extracts and formulations of aloe vera, henna, adiantum capillus-veneris, and myrrh on mouse dermal fibroblast cells
Background: Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris, Commiphora molmol, Aloe vera, and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Methods: Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β 1and Vegf-A genes were monitored by real-time polymerase chain reaction. Results: A. capillus-veneris, C. molmol and henna extract improved the expression of Tgf β 1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro. Conclusions: The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgf β 1 and Vegf-A genes in fibroblast cells treated with extracts.