Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
133
result(s) for
"Gamazon, Eric R."
Sort by:
A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis
2020
Here, we present a joint-tissue imputation (JTI) approach and a Mendelian randomization framework for causal inference, MR-JTI. JTI borrows information across transcriptomes of different tissues, leveraging shared genetic regulation, to improve prediction performance in a tissue-dependent manner. Notably, JTI includes the single-tissue imputation method PrediXcan as a special case and outperforms other single-tissue approaches (the Bayesian sparse linear mixed model and Dirichlet process regression). MR-JTI models variant-level heterogeneity (primarily due to horizontal pleiotropy, addressing a major challenge of transcriptome-wide association study interpretation) and performs causal inference with type I error control. We make explicit the connection between the genetic architecture of gene expression and of complex traits and the suitability of Mendelian randomization as a causal inference strategy for transcriptome-wide association studies. We provide a resource of imputation models generated from GTEx and PsychENCODE panels. Analysis of biobanks and meta-analysis data, and extensive simulations show substantially improved statistical power, replication and causal mapping rate for JTI relative to existing approaches.
MR-JTI, a unified framework for joint-tissue imputation and Mendelian randomization, improves prediction performance in a tissue-dependent manner when applied to large-scale biobanks and meta-analysis data.
Journal Article
A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression
by
Derks, Eske M.
,
Gerring, Zachary F.
,
Gamazon, Eric R.
in
Bioinformatics
,
Biology and Life Sciences
,
Brain Chemistry
2019
Major depression is a common and severe psychiatric disorder with a highly polygenic genetic architecture. Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with major depression, but the exact causal genes and biological mechanisms are largely unknown. Tissue-specific network approaches may identify molecular mechanisms underlying major depression and provide a biological substrate for integrative analyses. We provide a framework for the identification of individual risk genes and gene co-expression networks using genome-wide association summary statistics and gene expression information across multiple human brain tissues and whole blood. We developed a novel gene-based method called eMAGMA that leverages tissue-specific eQTL information to identify 99 biologically plausible risk genes associated with major depression, of which 58 are novel. Among these novel associations is Complement Factor 4A (C4A), recently implicated in schizophrenia through its role in synaptic pruning during postnatal development. Major depression risk genes were enriched in gene co-expression modules in multiple brain tissues and the implicated gene modules contained genes involved in synaptic signalling, neuronal development, and cell transport pathways. Modules enriched with major depression signals were strongly preserved across brain tissues, but were weakly preserved in whole blood, highlighting the importance of using disease-relevant tissues in genetic studies of psychiatric traits. We identified tissue-specific genes and gene co-expression networks associated with major depression. Our novel analytical framework can be used to gain fundamental insights into the functioning of the nervous system in major depression and other brain-related traits.
Journal Article
NeuroimaGene: an R package for assessing the neurological correlates of genetically regulated gene expression
2024
Background
We present the NeuroimaGene resource as an R package designed to assist researchers in identifying genes and neurologic features relevant to psychiatric and neurological health. While recent studies have identified hundreds of genes as potential components of pathophysiology in neurologic and psychiatric disease, interpreting the physiological consequences of this variation is challenging. The integration of neuroimaging data with molecular findings is a step toward addressing this challenge. In addition to sharing associations with both molecular variation and clinical phenotypes, neuroimaging features are intrinsically informative of cognitive processes. NeuroimaGene provides a tool to understand how disease-associated genes relate to the intermediate structure of the brain.
Results
We created NeuroimaGene, a user-friendly, open access R package now available for public use. Its primary function is to identify neuroimaging derived brain features that are impacted by genetically regulated expression of user-provided genes or gene sets. This resource can be used to (1) characterize individual genes or gene sets as relevant to the structure and function of the brain, (2) identify the region(s) of the brain or body in which expression of target gene(s) is neurologically relevant, (3) impute the brain features most impacted by user-defined gene sets such as those produced by cohort level gene association studies, and (4) generate publication level, modifiable visual plots of significant findings. We demonstrate the utility of the resource by identifying neurologic correlates of stroke-associated genes derived from pre-existing analyses.
Conclusions
Integrating neurologic data as an intermediate phenotype in the pathway from genes to brain-based diagnostic phenotypes increases the interpretability of molecular studies and enriches our understanding of disease pathophysiology. The NeuroimaGene R package is designed to assist in this process and is publicly available for use.
Journal Article
SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells
2021
Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism
1
. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions
2
. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron–sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.
SLC25A39 and its paralogue SLC25A40 have redundant roles in the import of glutathione into mitochondria of mammalian cells.
Journal Article
Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record
by
Roden, Dan M.
,
Denny, Joshua C.
,
Bastarache, Lisa A.
in
Alignment
,
Bioinformatics
,
Biology and Life Sciences
2017
To compare three groupings of Electronic Health Record (EHR) billing codes for their ability to represent clinically meaningful phenotypes and to replicate known genetic associations. The three tested coding systems were the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes, the Agency for Healthcare Research and Quality Clinical Classification Software for ICD-9-CM (CCS), and manually curated \"phecodes\" designed to facilitate phenome-wide association studies (PheWAS) in EHRs.
We selected 100 disease phenotypes and compared the ability of each coding system to accurately represent them without performing additional groupings. The 100 phenotypes included 25 randomly-chosen clinical phenotypes pursued in prior genome-wide association studies (GWAS) and another 75 common disease phenotypes mentioned across free-text problem lists from 189,289 individuals. We then evaluated the performance of each coding system to replicate known associations for 440 SNP-phenotype pairs.
Out of the 100 tested clinical phenotypes, phecodes exactly matched 83, compared to 53 for ICD-9-CM and 32 for CCS. ICD-9-CM codes were typically too detailed (requiring custom groupings) while CCS codes were often not granular enough. Among 440 tested known SNP-phenotype associations, use of phecodes replicated 153 SNP-phenotype pairs compared to 143 for ICD-9-CM and 139 for CCS. Phecodes also generally produced stronger odds ratios and lower p-values for known associations than ICD-9-CM and CCS. Finally, evaluation of several SNPs via PheWAS identified novel potential signals, some seen in only using the phecode approach. Among them, rs7318369 in PEPD was associated with gastrointestinal hemorrhage.
Our results suggest that the phecode groupings better align with clinical diseases mentioned in clinical practice or for genomic studies. ICD-9-CM, CCS, and phecode groupings all worked for PheWAS-type studies, though the phecode groupings produced superior results.
Journal Article
A gene-based association method for mapping traits using reference transcriptome data
by
Carroll, Robert J
,
Wheeler, Heather E
,
Gamazon, Eric R
in
631/114/794
,
631/208/199
,
631/208/205/2138
2015
Hae Kyung Im and colleagues report a method for predicting gene expression perturbations from genotype data after training on reference transcriptome data sets. Association of predicted gene expression with disease traits identifies known and new candidate disease genes.
Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individual's genetic profile and correlates 'imputed' gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys the benefits of gene-based approaches such as reduced multiple-testing burden and a principled approach to the design of follow-up experiments. Our results demonstrate that PrediXcan can detect known and new genes associated with disease traits and provide insights into the mechanism of these associations.
Journal Article
Transcriptome-wide root causal inference
by
Gamazon, Eric R.
,
Strobl, Eric V.
in
Algorithms
,
Causal inference
,
Computational Biology - methods
2025
Root causal genes correspond to the first gene expression levels perturbed during pathogenesis by genetic or non-genetic factors. Targeting root causal genes has the potential to alleviate disease entirely by eliminating pathology near its onset. No existing algorithm has been designed to discover root causal genes from observational data alone. We therefore propose the Transcriptome-Wide Root Causal Inference (TWRCI) algorithm that identifies root causal genes and their causal graph using a combination of genetic variant and unperturbed bulk RNA sequencing data. TWRCI uses a novel competitive regression procedure to annotate cis and trans-genetic variants to the gene expression levels they directly cause. The algorithm simultaneously determines the sequence in which gene expression changes propagate through the system to pinpoint the underlying causal graph and estimate root causal effects. TWRCI outperforms alternative approaches across a diverse group of metrics by directly targeting root causal genes while accounting for distal relations, linkage disequilibrium, patient heterogeneity and widespread pleiotropy. We demonstrate the algorithm by uncovering the root causal mechanisms of two complex diseases, which we confirm by replication using independent genome-wide summary statistics.
Journal Article
Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation
2018
We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a
cis
-eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40–80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU.
Integration of expression quantitative trait locus (eQTL) data from the Genotype-Tissue Expression project with genome-wide association study data shows that eQTLs are enriched for trait associations in disease-relevant tissues.
Journal Article
Genomics of alternative splicing: evolution, development and pathophysiology
by
Stranger, Barbara E.
,
Gamazon, Eric R.
in
Alternative Splicing
,
Analysis
,
beta-Thalassemia - genetics
2014
Alternative splicing is a major cellular mechanism in metazoans for generating proteomic diversity. A large proportion of protein-coding genes in multicellular organisms undergo alternative splicing, and in humans, it has been estimated that nearly 90 % of protein-coding genes—much larger than expected—are subject to alternative splicing. Genomic analyses of alternative splicing have illuminated its universal role in shaping the evolution of genomes, in the control of developmental processes, and in the dynamic regulation of the transcriptome to influence phenotype. Disruption of the splicing machinery has been found to drive pathophysiology, and indeed reprogramming of aberrant splicing can provide novel approaches to the development of molecular therapy. This review focuses on the recent progress in our understanding of alternative splicing brought about by the unprecedented explosive growth of genomic data and highlights the relevance of human splicing variation on disease and therapy.
Journal Article
Genetic architecture of host proteins involved in SARS-CoV-2 infection
2020
Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in
cis
(MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver (
https://omicscience.org/apps/covidpgwas/
).
Finding effective treatments for COVID-19 depends upon understanding genetic regulation of proteins involved in SARS-CoV-2 infection and host response. Here, the authors identify genetic variants linked to expression of such proteins, data which could lead to the discovery of therapeutic targets.
Journal Article