Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Gambarotti, Marco"
Sort by:
Ewing sarcoma and Ewing-like tumors
Ewing sarcoma (ES) and Ewing-like sarcomas are highly aggressive round cell mesenchymal neoplasms, most often occurring in children and young adults. The identification of novel molecular alterations has greatly contributed to a profound reappraisal of classification, to the extent that the category of undifferentiated round cell sarcoma has significantly shrunk. In fact, in addition to Ewing sarcoma, we currently recognize three main categories: round cell sarcomas with EWSR1 gene fusion with non-ETS family members, CIC-rearranged sarcomas, and BCOR-rearranged sarcomas. Interestingly, despite significant morphologic overlap, most of these entities tend to exhibit morphologic features predictive of the underlying molecular alteration. Ewing sarcoma is the prototype of round cell sarcoma whereas in CIC sarcomas, focal pleomorphism and epithelioid morphology can predominate. BCOR sarcomas often exhibit a spindled neoplastic cell population. NFATC2 sarcoma may exhibit remarkable epithelioid features, and PATZ1 sarcomas often feature a sclerotic background. The differential diagnosis for these tumors is rather broad, and among round cell sarcomas includes alveolar rhabdomyosarcoma, desmoplastic small round cell tumor, poorly differentiated round cell synovial sarcoma, small cell osteosarcoma, and mesenchymal chondrosarcoma. A combination of morphologic, immunohistochemical, and molecular findings allows accurate classification in most cases. A granular diagnostic approach to Ewing sarcoma and Ewing-like sarcomas is justified by significant differences in terms of both response to chemotherapy and overall survival. As all these entities are in part defined by specific fusion genes, a molecular diagnostic approach based on NGS technology should be considered. In consideration of the extreme rarity of many of these tumor entities, referral to expert rare cancer centers or to rare cancer networks represents the best strategy in order to minimize diagnostic inaccuracy, and allow proper patient management.
Denosumab in the treatment of giant cell tumor of the spine. Preliminary report, review of the literature and protocol proposal
BackgroundThe interest on the role of Denosumab in the treatment strategy of giant cell tumor of the spine is growing. En bloc resection is considered the Enneking appropriate treatment, but morbidity and functional loss are sometimes unacceptable. Denosumab could play a role as a stand-alone treatment, but also as preoperative treatment or as postoperative after intralesional surgery.Materials and methodsA cohort of 10 out of 12 cases of spinal GCT consecutively treated with Denosumab are analyzed and discussed compared to the cases reported in the literature. A staging of the radiological effect of the treatment is proposed.ResultsThe stand-alone and postoperative treatments are still running (12 to 88 months). One therapy was stopped after 15 months, once a satisfactory local effect was achieved, but the treatment had to be restarted 2 months later due to the recurrence of the erosive images. The new treatment was successful. At 1-year follow-up after the gross total excision followed by postoperative Denosumab treatment, no evidence of local recurrence was found. The preoperative treatment duration ranged from 3 to 24 months. No local recurrence followed the en bloc resections.ConclusionsDenosumab alone is effective in relieving pain, increasing the ossification and sometimes reducing the tumor volume. It can be considered an excellent solution in spine GCTs whose surgical treatment cannot be Enneking appropriate or is associated with unacceptable morbidity or loss of functions. It is still impossible to state when to safely stop the treatment. Denosumab also plays a role as preoperative protocol.These slides can be retrieved under Electronic Supplementary Material.
Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial
Results of previous study showed promising but short-lived activity of sorafenib in the treatment of patients with unresectable advanced and metastatic osteosarcoma. This treatment failure has been attributed to the mTOR pathway and might therefore be overcome with the addition of mTOR inhibitors. We aimed to investigate the activity of sorafenib in combination with everolimus in patients with inoperable high-grade osteosarcoma progressing after standard treatment. We did this non-randomised phase 2 trial in three Italian Sarcoma Group centres. We enrolled adults (≥18 years) with relapsed or unresectable osteosarcoma progressing after standard treatment (methotrexate, cisplatin, and doxorubicin, with or without ifosfamide). Patients received 800 mg sorafenib plus 5 mg everolimus once a day until disease progression or unacceptable toxic effects. The primary endpoint was 6 month progression-free survival (PFS). All analyses were intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT01804374. We enrolled 38 patients between June 16, 2011, and June 4, 2013. 17 (45%; 95% CI 28–61) of 38 patients were progression free at 6 months. Toxic effects led to dose reductions, or short interruptions, or both in 25 (66%) of 38 patients and permanent discontinuation for two (5%) patients. The most common grade 3–4 adverse events were lymphopenia and hypophosphataemia each in six (16%) patients, hand and foot syndrome in five (13%), thrombocytopenia in four (11%), and fatigue, oral mucositis, diarrhoea, and anaemia each in two (5%). One patient (3%) had a grade 3 pneumothorax that required trans-thoracic drainage, and that recurred at the time of disease progression. This was reported as a serious adverse event related to the study drugs in both instances. No other serious adverse events were reported during the trial. There were no treatment-related deaths. Although the combination of sorafenib and everolimus showed activity as a further-line treatment for patients with advanced or unresectable osteosarcoma, it did not attain the prespecified target of 6 month PFS of 50% or greater. Italian Sarcoma Group.
Malignancy in giant cell tumor of bone: analysis of an open-label phase 2 study of denosumab
Background Giant cell tumor of bone (GCTB) is a rare osteoclastogenic stromal tumor. GCTB can rarely undergo malignant transformation. This post hoc analysis evaluated and classified malignancies in patients with GCTB who received denosumab. Methods This analysis was conducted on patients with pathologically confirmed GCTB and measurable active disease treated with denosumab 120 mg subcutaneously once every 4 weeks, with loading doses on study days 8 and 15, as part of a phase 2, open-label, multicenter study. We identified potential cases of malignancy related to GCTB through an independent multidisciplinary review or medical history, associated imaging or histopathologic reports, and disease course. The findings were summarized and no statistical analysis was performed. Results Twenty of five hundred twenty-six patients (3.8%) who received at least one dose of denosumab were misdiagnosed with GCTB that was later discovered to be malignancies: five primary malignant GCTB, five secondary malignant GCTB, four sarcomatous transformations, and six patients with other malignancies (giant cell-rich osteosarcoma, undifferentiated pleomorphic sarcoma, spindle cell sarcoma, osteogenic sarcoma, phosphaturic mesenchymal tumor of mixed connective tissue type, and fibrosarcoma/malignant fibrous histiocytoma). Many malignancies were present before denosumab was initiated (8 definitive cases, 7 likely cases), excluding potential involvement of denosumab in these cases. Signs associated with potential misdiagnoses of GCTB included poor mineralization with denosumab treatment, rapid relapse in pain, or a failure of the typical dramatic improvement in pain normally observed with denosumab. Conclusions Although rare, GCTB can undergo malignant transformation, and rates in this study were consistent with previous reports. Signs of poor mineralization or lack of response to denosumab treatment may warrant close monitoring. Trial registration clinicaltrials.gov , ( NCT00680992 ). Registered May 20, 2008.
Unlocking bone for proteomic analysis and FISH
Bone tissue is critically lagging behind soft tissues and biofluids in our effort to advance precision medicine. The main challenges have been accessibility and the requirement for deleterious decalcification processes that impact the fidelity of diagnostic histomorphology and hinder downstream analyses such as fluorescence in-situ hybridization (FISH). We have developed an alternative fixation chemistry that simultaneously fixes and decalcifies bone tissue. We compared tissue morphology, immunohistochemistry (IHC), cell signal phosphoprotein analysis, and FISH in 50 patient matched primary bone cancer cases that were either formalin fixed and decalcified, or theralin fixed with and without decalcification. Use of theralin improved tissue histomorphology, whereas overall IHC was comparable to formalin fixed, decalcified samples. Theralin-fixed samples showed a significant increase in protein and DNA extractability, supporting technologies such as laser-capture microdissection and reverse phase protein microarrays. Formalin-fixed bone samples suffered from a fixation artifact where protein quantification of β-actin directly correlated with fixation time. Theralin-fixed samples were not affected by this artifact. Moreover, theralin fixation enabled standard FISH staining in bone cancer samples, whereas no FISH staining was observed in formalin-fixed samples. We conclude that the use of theralin fixation unlocks the molecular archive within bone tissue allowing bone to enter the standard tissue analysis pipeline. This will have significant implications for bone cancer patients, in whom personalized medicine has yet to be implemented.
Does PAX7 and NKX2.2 immunoreactivity in Ewing sarcoma have prognostic significance?
Ewing sarcoma (ES) is an aggressive neoplasm with variable morphology. It has no specific immunoprofile or molecular signature. Neither CD99, NKX2.2 nor PAX7 immunoreactivity alone is completely specific, although diagnostic specificity improves when combined. The purpose of the present study was to investigate the immunohistochemical (IHC) expression of PAX7 in a large series of genetically confirmed ES. Existing results for CD99 and NKX2.2 immunoexpression, morphological findings and molecular studies (fusion gene subtypes) were retrieved from a previous study. Survival analyses were performed in cases with available clinical follow-up. PAX7 was positive in 95.5% of ES with diffuse staining (> 50%) in all positive cases and moderate or strong intensity for most cases. Nineteen ES displayed both PAX7 and CD99 immunoreactivity but lacked NKX2.2 immunoexpression. No relationships could be found between PAX7 expression and the histological types or ES gene fusion subtypes. Univariant/multivariate analysis showed that lack of PAX7 and/or NKX2.2 immunoexpression constitute independent poor prognostic factors for progression free survival (PFS) and overall survival (OS). In conclusion, IHC for CD99, NKX2.2, and PAX7 may be useful in daily practice for ES diagnosis, particularly in hospitals lacking facilities for molecular studies. In addition, the combination of strong CD99 membranous positivity and nuclear PAX7 and NKX2.2 immunoreactivity seems to be very reliable for ES diagnosis when supported by a corroborating histomorphologic and clinical picture. Although PAX7 is not entirely specific for ES, it seems to have a more extensive and strong nuclear immunoreactivity than NKX2.2 expression, even in tumors with decalcification artifact. Considering the prognostically significant data herein reported, we strongly recommend validation in prospective ES series that include localized and disseminated tumors.
Establishment and Characterization of OS-MET-R-092: A Novel Patient-Derived Cell Culture from an Osteosarcoma Bone Metastasis
Bone metastases from osteosarcoma occur in only 10% of patients, and related preclinical models are lacking. A patient diagnosed with pelvic osteosarcoma developed a metachronous scapular metastasis and was treated with multi-agent chemotherapy and surgery. Patient-derived tissue fragments (PDTFs) were obtained from leftover material after diagnosis and biobanking. PDTFs were grown on chick chorioallantoic membrane, establishing an in vivo-like predictive model. Additionally, we obtained a patient-derived cell culture, OS-MET-R-092, which has been maintained in vitro for nearly one year. OS-MET-R-092 cells were authenticated based on short tandem repeats and on their morphology when grown on commercial 3D scaffolds. Using U-2 OS and SaOS-2 as controls, we characterized growth, clonogenic potential, ability to form spheroids, migration, osteogenic differentiation, and expression of related genes. OS-MET-R-092 cells showed a low proliferation rate, impaired differentiation potential, and migratory abilities comparable to SaOS-2, while expressing higher levels of some MMPs and CD44. Functionally, OS-MET-R-092 cells demonstrated a resistant phenotype to doxorubicin, cisplatin, gemcitabine, and docetaxel, corroborated by higher expression of chemo-resistance-related genes. Collectively, OS-MET-R-092 represents a valuable tool for studying bone metastasis from osteosarcoma across various experimental settings and serves as the foundational building block for composite and translatable 3D models.
The Efficacy of Molecular Analysis in the Diagnosis of Bone and Soft Tissue Sarcoma: A 15-Year Mono-Institutional Study
The histological diagnosis of sarcoma can be difficult as it sometimes requires the combination of morphological and immunophenotypic analyses with molecular tests. A total of 2705 tissue samples of sarcoma consecutively collected from 2006 until 2020 that had undergone molecular analysis were assessed to evaluate their diagnostic utility compared with histological assessments. A total of 3051 molecular analyses were performed, including 1484 gene fusions tested by c/qRT–PCR, 992 gene rearrangements analysed by FISH, 433 analyses of the gene status of MDM2, 126 mutational analyses and 16 NGS analysis. Of the samples analysed, 68% were from formalin-fixed, paraffin-embedded tissue and 32% were from frozen tissue. C/qRT–PCR and FISH analyses were conclusive on formalin-fixed, paraffin-embedded tissue in 74% and 76% of samples, respectively, but the combination of the two methods gave us conclusive results in 96% and 89% of frozen and formalin-fixed, paraffin-embedded tissues, respectively. We demonstrate the utility of c/qRT–PCR and FISH for sarcoma diagnosis and that each has advantages in specific contexts. We conclude that it is possible to accurately predict the sarcoma subtype using a panel of different subtype-specific FISH probes and c/qRT–PCR assays, thereby greatly facilitating the differential diagnosis of these tumours.
Vertebroplasty shows no antitumoral effect on vertebral metastasis: a case-based study on anatomopathological examinations
PurposePercutaneous vertebroplasty (VTP) is a well-known surgical technique used for pain management and vertebral consolidation in the treatment of osteolytic metastases of the spine. While this indication is proven and commonly accepted, an antitumoral effect of polymethylmethacrylate (PMMA) has been proposed but not yet demonstrated.The aim of our study is to evaluate the evidences of antitumoral effect on anatomopathological examination. We present a small series of pathology findings after VTP for spine metastases that support the lack of antitumoral effect of PMMA. MethodsWe have retrospectively analyzed three cases of patients treated for en bloc excision of recurrent spine metastases previously submitted elsewhere to VTP on the same levels.We discuss our results with the literature reporting of an antitumoral effect of VTP.ResultsIn our series, after anatomopathological examination, a cement-induced tumor necrosis was never found. Conversely, a foreign-body reaction around the cement was found, inside vital tumor. These results are consistent with an immune reaction to a foreign body without evidences of an antitumoral effect of PMMA.ConclusionThe antitumoral effect of PMMA should not be taken into account as an indication for VTP in spinal metastases. It is important not to misuse VTP as a therapy aiming at tumor control. Other therapies such as radiotherapy, radiosurgery and open surgery are available for that purpose.
ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity
Background The treatment of metastatic osteosarcoma (OS) remains a challenge for oncologists, and novel therapeutic strategies are urgently needed. An understanding of the pathways that regulate OS dissemination is required for the design of novel treatment approaches. We recently identified Rho-associated coiled-coil containing protein kinase 2 (ROCK2) as a crucial driver of OS cell migration. In this study, we explored the impact of ROCK2 disruption on the metastatic capabilities of OS cells and analyzed its functional relationship with Yes-associated protein-1 (YAP), the main transcriptional mediator of mechanotransduction signaling. Methods The effects of ROCK2 depletion on metastasis were studied in NOD Scid gamma (NSG) mice injected with U-2OS cells in which ROCK2 expression had been stably silenced. Functional studies were performed in vitro in human U-2OS cells and in three novel cell lines derived from patient-derived xenografts (PDXs) by using standard methods to evaluate malignancy parameters and signaling transduction. The nuclear immunostaining of YAP and the evaluation of its downstream targets Cysteine Rich Angiogenic Inducer 6, Connective Tissue Growth Factor and Cyclin D1 by quantitative PCR were performed to analyze YAP activity. The effect of the expression and activity of ROCK2 and YAP on tumor progression was analyzed in 175 OS primary tumors. Results The silencing of ROCK2 markedly reduced tumor growth and completely abolished the metastatic ability of U-2OS cells. The depletion of ROCK2, either by pharmacological inhibition or silencing, induced a dose- and time-dependent reduction in the nuclear expression and transcriptional activity of YAP. The nuclear expression of YAP was observed in 80/175 (46%) tumor samples and was significantly correlated with worse patient prognosis and a higher likelihood of metastasis and death. The use of verteporfin, a molecule that specifically inhibits the TEAD–YAP association, remarkably impaired the growth and migration of OS cells in vitro. Moreover to inhibiting YAP activity, our findings indicate that verteporfin also affects the ROCK2 protein and its functions. Conclusions We describe the functional connection between ROCK2 and YAP in the regulation of OS cell migration and metastasis formation. These data provide support for the use of verteporfin as a possible therapeutic option to prevent OS cell dissemination.