Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Gangwar, Reetesh Kumar"
Sort by:
Diagnostics of Argon Plasma Using Reliable Electron-Impact Excitation Cross Sections of Ar and Ar
Comprehensive collisional radiative (CR) models have been developed for the diagnostic of argon plasma using Ar and Ar+ emission lines. The present CR models consist of 42 and 114 fine-structure levels of Ar and Ar+, respectively. Various populating and depopulating mechanisms are incorporated in the model. A complete set of electron-impact fine-structure resolved excitation cross-sections for different excited levels in Ar and Ar+ are used, which are obtained by employing relativistic distorted wave theory. Along with this, the electron-impact ionization, radiation trapping, diffusion, and three-body recombination are also considered. Further, to demonstrate the applicability of the present CR model, we applied it to characterize the Helicon-plasma utilizing the optical emission spectroscopy measurements. The key plasma parameters, such as electron density and electron temperature, are obtained using their measured Ar and Ar+ emission line intensities. Our results are in reasonable agreement with their anticipated estimates. The matching of our calculated intensities of the different Ar and Ar+ lines shows excellent agreement with the measured intensities at various powers.