Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Ganju, Neil K."
Sort by:
A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes
Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.
Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes
Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability. Point measurements have historically been used to assess salt marsh vulnerability; however, these metrics do not integrate over the necessary spatiotemporal scales. Here, the authors show that two geomorphic-based, spatiotemporally integrative metrics reveal vulnerability not captured by traditional metrics.
A geospatially resolved wetland vulnerability index: Synthesis of physical drivers
Assessing wetland vulnerability to chronic and episodic physical drivers is fundamental for establishing restoration priorities. We synthesized multiple data sets from E.B. Forsythe National Wildlife Refuge, New Jersey, to establish a wetland vulnerability metric that integrates a range of physical processes, anthropogenic impact and physical/biophysical features. The geospatial data are based on aerial imagery, remote sensing, regulatory information, and hydrodynamic modeling; and include elevation, tidal range, unvegetated to vegetated marsh ratio (UVVR), shoreline erosion, potential exposure to contaminants, residence time, marsh condition change, change in salinity, salinity exposure and sediment concentration. First, we delineated the wetland complex into individual marsh units based on surface contours, and then defined a wetland vulnerability index that combined contributions from all parameters. We applied principal component and cluster analyses to explore the interrelations between the data layers, and separate regions that exhibited common characteristics. Our analysis shows that the spatial variation of vulnerability in this domain cannot be explained satisfactorily by a smaller subset of the variables. The most influential factor on the vulnerability index was the combined effect of elevation, tide range, residence time, and UVVR. Tide range and residence time had the highest correlation, and similar bay-wide spatial variation. Some variables (e.g., shoreline erosion) had no significant correlation with the rest of the variables. The aggregated index based on the complete dataset allows us to assess the overall state of a given marsh unit and quickly locate the most vulnerable units in a larger marsh complex. The application of geospatially complete datasets and consideration of chronic and episodic physical drivers represents an advance over traditional point-based methods for wetland assessment.
Identifying Salt Marsh Shorelines from Remotely Sensed Elevation Data and Imagery
Salt marshes are valuable ecosystems that are vulnerable to lateral erosion, submergence, and internal disintegration due to sea level rise, storms, and sediment deficits. Because many salt marshes are losing area in response to these factors, it is important to monitor their lateral extent at high resolution over multiple timescales. In this study we describe two methods to calculate the location of the salt marsh shoreline. The marsh edge from elevation data (MEED) method uses remotely sensed elevation data to calculate an objective proxy for the shoreline of a salt marsh. This proxy is the abrupt change in elevation that usually characterizes the seaward edge of a salt marsh, designated the “marsh scarp.” It is detected as the maximum slope along a cross-shore transect between mean high water and mean tide level. The method was tested using lidar topobathymetric and photogrammetric elevation data from Massachusetts, USA. The other method to calculate the salt marsh shoreline is the marsh edge by image processing (MEIP) method which finds the unvegetated/vegetated line. This method applies image classification techniques to multispectral imagery and elevation datasets for edge detection. The method was tested using aerial imagery and coastal elevation data from the Plum Island Estuary in Massachusetts, USA. Both methods calculate a line that closely follows the edge of vegetation seen in imagery. The two methods were compared to each other using high resolution unmanned aircraft systems (UAS) data, and to a heads-up digitized shoreline. The root-mean-square deviation was 0.6 meters between the two methods, and less than 0.43 meters from the digitized shoreline. The MEIP method was also applied to a lower resolution dataset to investigate the effect of horizontal resolution on the results. Both methods provide an accurate, efficient, and objective way to track salt marsh shorelines with spatially intensive data over large spatial scales, which is necessary to evaluate geomorphic change and wetland vulnerability.
Understanding tidal marsh trajectories: evaluation of multiple indicators of marsh persistence
Robust assessments of ecosystem stability are critical for informing conservation and management decisions. Tidal marsh ecosystems provide vital services, yet are globally threatened by anthropogenic alterations to physical and biological processes. A variety of monitoring and modeling approaches have been undertaken to determine which tidal marshes are likely to persist into the future. Here, we conduct the most robust comparison of marsh metrics to date, building on two foundational studies that had previously and independently developed metrics for marsh condition. We characterized pairs of marshes with contrasting trajectories of marsh cover across six regions of the United States, using a combination of remote-sensing and field-based metrics. We also quantified decadal trends in marsh conversion to mudflat/open water at these twelve marshes. Our results suggest that metrics quantifying the distribution of vegetation across an elevational gradient represent the best indicators of marsh trajectories. The unvegetated to vegetated ratio and flood-ebb sediment differential also served as valuable indicators. No single metric universally predicted marsh trajectories, and therefore a more robust approach includes a suite of spatially-integrated, landscape-scale metrics that are mostly obtainable from remote sensing. Data from surface elevation tables and marker horizons revealed that degrading marshes can have higher rates of vertical accretion and elevation gain than more intact counterparts, likely due to longer inundation times potentially combined with internal recycling of material. A high rate of elevation gain relative to local sea-level rise has been considered critical to marsh persistence, but our results suggest that it also may serve as a signature of degradation in marshes that have already begun to deteriorate. This investigation, with rigorous comparison and integration of metrics initially developed independently, tested at a broad geographic scale, provides a model for collaborative science to develop management tools for improving conservation outcomes.
Marshes Are the New Beaches
Recent coastal storms and associated recovery efforts have led to increased investment in nature-based coastal protection, including restoration of salt marshes and construction of living shorelines. In particular, many of these efforts focus on increasing vertical elevation through sediment nourishment, where sediment is removed from the tidal channel and placed on the marsh plain, or preventing lateral erosion through shoreline protection. In the USA alone, millions of dollars have been allocated or spent on these coastal protection solutions over the last few decades because of their perceived sustainability and ecologically positive co-benefits including habitat provision and carbon sequestration. These projects would benefit from integration of sediment transport pathways, budgets, and metrics during planning and modeling of restoration outcomes, in order to evaluate sustainability before investment. This is analogous to the decades of experience with coastal management and engineering on the open coast. Salt marshes are geomorphic features that rely partially on external sediment supply to maintain their network of tidal channels, intertidal flats, and marsh plain. Removing sediment from one component of the overall system to nourish another component may be counterproductive, given that the net sediment budget is unchanged. For example, dredging a tidal channel beyond its equilibrium condition will cause it to fill with sediment from the tidal flat or elsewhere in the system. This may cause slumping of the marsh edge, or over-deepening of other sections of the channel to compensate. Similarly, shoreline protection that prevents edge erosion hampers the marsh plain’s ability to accrete on the levee and naturally transgress landward or it starves other components of the system of regularly supplied sediment. A limited vertical or lateral-only perspective, instead of a three-dimensional perspective, during project planning and evaluation may lead to suboptimal decision-making regarding restoration priorities, approaches, and outcomes. I contend that before significant investments are made in marsh restoration through sediment nourishment or shoreline protection, sediment transport measurements and models that consider sediment dynamics should be integrated into the early phases of restoration planning. This will help identify where and under what conditions marsh restoration will most likely be successful and economically justified. Triaging and prioritizing is then possible, which is a sustainable approach for restoration, given the persistent vulnerability of marshes to sea-level rise, storms, and sediment deficits.
Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region
Sea level rise (SLR) and saltwater intrusion are driving inland shifts in coastal ecosystems. Here, we make high‐resolution (1 m) predictions of land conversion under future SLR scenarios in 81 watersheds surrounding Chesapeake Bay, United States, a hotspot for accelerated SLR and saltwater intrusion. We find that 1050–3748 km2 of marsh could be created by 2100, largely at the expense of forested wetlands. Predicted marsh migration exceeds total current tidal marsh area and is ~ 4× greater than historical observations. Anthropogenic land use in marsh migration areas is concentrated within a few watersheds and minimally impacts calculated metrics of marsh resilience. Despite regional marsh area maintenance, local ecosystem service replacement within vulnerable watersheds remains uncertain. However, our work suggests that topography rather than land use drives spatial variability in wetland vulnerability regionally, and that rural land conversion is needed to compensate for extensive areal losses on heavily developed coasts globally.
A novel approach for direct estimation of fresh groundwater discharge to an estuary
Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater‐fed tidal creek over a spring‐neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross‐sectionally averaged salinity. These measurements were used in a time‐dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time‐series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well‐defined cross‐sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Key Points Fresh groundwater discharge quantified using time‐dependent salt balance Discharge varied linearly with tidal range Peak discharge an order of magnitude greater than mean discharge
Quantifying the Residence Time and Flushing Characteristics of a Shallow, Back-Barrier Estuary: Application of Hydrodynamic and Particle Tracking Models
Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.
Modeling Marsh Dynamics Using a 3-D Coupled Wave-Flow-Sediment Model
Salt marshes are dynamic biogeomorphic systems that respond to external physical factors, including tides, sediment transport, and waves, as well as internal processes such as autochthonous soil formation. Predicting the fate of marshes requires a modeling framework that accounts for these processes in a coupled fashion. In this study, we implement two new marsh dynamic processes in the 3-D COAWST (coupled-ocean-atmosphere-wave sediment transport) model. The processes added are the erosion of the marsh edge scarp caused by lateral wave thrust from surface waves and vertical accretion driven by biomass production on the marsh platform. The sediment released from the marsh during edge erosion causes a change in bathymetry, thereby modifying the wave-energy reaching the marsh edge. Marsh vertical accretion due to biomass production is considered for a single vegetation species and is determined by the hydroperiod parameters (tidal datums) and the elevation of the marsh cells. Tidal datums are stored at user-defined intervals as a hindcast (on the order of days) and used to update the vertical growth formulation. Idealized domains are utilized to verify the lateral wave thrust formulation and show the dynamics of lateral wave erosion leading to horizontal retreat of marsh edge. The simulations of Reedy and Dinner Creeks within the Barnegat Bay estuary system demonstrate the model capability to account for both lateral wave erosion and vertical accretion due to biomass production in a realistic marsh complex. The simulations show that vertical accretion is dominated by organic deposition in the marsh interior, whereas deposition of mineral estuarine sediments occurs predominantly along the channel edges. The ability of the model to capture the fate of the sediment can be extended to model to simulate the impacts of future storms and relative sea-level rise (RSLR) scenarios on salt-marsh ecomorphodynamics.