Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
538 result(s) for "Gao, George F."
Sort by:
Two-birds-one-stone approach to combine protein and mRNA vaccines for COVID-19
COVID-19 vaccines have been successful, but their duration and level of protection could be improved to cover all SARS-CoV-2 variants. A self-assembling enveloped virus-like particle vaccine combining features of mRNA and protein vaccines might provide a way forward.
Influenza and the Live Poultry Trade
Live poultry trade at local markets has long been a part of China's national identity. From small villages to big cities, the gathering and selling of different birds in this vibrant atmosphere is at the heart of the country's cuisine culture. Unfortunately, the backdrop to this tradition has changed. Last year, the H7N9 virus, a new strain of influenza A, jumped from birds to humans, causing 144 cases of human infection and 47 deaths in China. Now a second wave of this flu is coursing through the country, with 258 confirmed cases and 99 deaths as of 8 April 2014. Scientific evidence points to a connection between the conditions at these live markets and the spread of flu, suggesting that until other means are found to prevent the transmission of or effectively treat the illness, China must shut down live poultry markets to prevent further spread of the virus and a possible global pandemic.
Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses
Key Points Interspecies transmission of influenza A viruses is the result of many factors. One of the key factors involved is a shift in the receptor-binding specificity of the virus, which is mostly determined by mutations in viral haemagglutinin (HA). Recent structural studies have provided molecular insights into the HA–host receptor interactions that have enabled several influenza A virus subtypes to jump from avian to human hosts. The combination of distinct amino acids at positions 225 and 190 of HA is important for determining the receptor-binding specificity of the H1 subtype. The Q226L and G228S substitutions in the HA glycoproteins of the H2 and H3 subtypes are sufficient to change the binding preference from the avian receptor to the human receptor. In an experimentally adapted H5 subtype, the Q226L substitution and loss of a glycosylation site near the receptor-binding site contribute to the shift in binding preference from the avian receptor to the human receptor. In the H7 subtype, amino acid substitutions at positions 186 and 226 of HA increase the preference for binding to the human receptor. The shift in the receptor-binding specificity of influenza A viruses is mostly determined by mutations in viral haemagglutinin. In this Review, Gao and colleagues discuss recent crystallographic studies that provide molecular insights into haemagglutinin–host receptor interactions that have enabled several influenza A virus subtypes to 'jump' from avian to human hosts. The recent emergence of the H7N9 avian influenza A virus and its ability to infect humans emphasize the epidemic and pandemic potential of these viruses. Interspecies transmission is the result of many factors, which ultimately lead to a change in the host tropism of the virus. One of the key factors involved is a shift in the receptor-binding specificity of the virus, which is mostly determined by mutations in the viral haemagglutinin (HA). In this Review, we discuss recent crystallographic studies that provide molecular insights into HA–host receptor interactions that have enabled several influenza A virus subtypes to 'jump' from avian to human hosts.
Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies. Host tropism and cell entry of pathogenic coronaviruses are mediated by their envelope spike (S) proteins. Here the authors present structural analyses of trimeric MERS-CoV and SARS-CoV S proteins in pre-fusion conformation, and reveal two states of the receptor binding domain that suggest new avenues for the generation of neutralizing antibodies.
Efficacy and Safety of the RBD-Dimer–Based Covid-19 Vaccine ZF2001 in Adults
ZF2001 contains a tandem-repeat dimeric receptor-binding domain of the SARS-CoV-2 spike protein with aluminum hydroxide adjuvant. In a phase 3 trial, 28,904 participants in five countries were randomly assigned to receive three doses of ZF2001 or placebo. After 6 months of follow-up, efficacy was 76% against infection, 87% against critical or severe disease, and 86% against death. Most side effects were local, low-grade, and transient.
Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (Convidecia/ZF2001): A randomized, observer-blinded, placebo-controlled trial
Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored Coronavirus Disease 2019 (COVID-19) vaccine (Convidecia, hereafter referred to as CV) and a protein-subunit-based COVID-19 vaccine (ZF2001, hereafter referred to as ZF). We conducted a randomized, observer-blinded, placebo-controlled trial, in which healthy adults aged 18 years or older, who have received 1 dose of Convidecia, with no history of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, were recruited in Jiangsu, China. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or placebo control (trivalent inactivated influenza vaccine (TIV)) administered at 28 days after priming, and received the third injection with ZF2001 at 5 months, referred to as CV/ZF/ZF (D0-D28-M5) and CV/ZF (D0-M5) regimen, respectively. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or TIV administered at 56 days after priming, and received the third injection with ZF2001 at 6 months, referred to as CV/ZF/ZF (D0-D56-M6) and CV/ZF (D0-M6) regimen, respectively. Participants and investigators were masked to the vaccine received but not to the boosting interval. Primary endpoints were the geometric mean titer (GMT) of neutralizing antibodies against wild-type SARS-CoV-2 and 7-day solicited adverse reactions. The primary analysis was done in the intention-to-treat population. Between April 7, 2021 and May 6, 2021, 120 eligible participants were randomly assigned to receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 28 days and 5 months post priming, and receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 56 days and 6 months post priming. Of them, 7 participants did not receive the third injection with ZF2001. A total of 26 participants (21.7%) reported solicited adverse reactions within 7 days post boost vaccinations, and all the reported adverse reactions were mild, with 13 (32.5%) in CV/ZF/ZF (D0-D28-M5) regimen, 7 (35.0%) in CV/ZF (D0- M5) regimen, 4 (10.0%) in CV/ZF/ZF (D0-D56-M6) regimen, and 2 (10.0%) in CV/ZF (D0-M6) regimen, respectively. At 14 days post first boost, GMTs of neutralizing antibodies in recipients receiving ZF2001 at 28 days and 56 days post priming were 18.7 (95% CI 13.7 to 25.5) and 25.9 (17.0 to 39.3), respectively, with geometric mean ratios of 2.0 (1.2 to 3.5) and 3.4 (1.8 to 6.4) compared to TIV. GMTs at 14 days after second boost of neutralizing antibodies increased to 107.2 (73.7 to 155.8) in CV/ZF/ZF (D0-D28-M5) regimen and 141.2 (83.4 to 238.8) in CV/ZF/ZF (D0-D56-M6) regimen. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced antibody levels comparable with that elicited by 3-dose schedules, with GMTs of 90.5 (45.6, 179.8) and 94.1 (44.0, 200.9), respectively. Study limitations include the absence of vaccine effectiveness in a real-world setting and current lack of immune persistence data. Heterologous boosting with ZF2001 following primary vaccination with Convidecia is more immunogenic than a single dose of Convidecia and is not associated with safety concerns. These results support flexibility in cooperating viral vectored and recombinant protein vaccines. Study on Heterologous Prime-boost of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine; ClinicalTrial.gov NCT04833101.
Impact of COVID-19 outbreaks and interventions on influenza in China and the United States
Coronavirus disease 2019 (COVID-19) was detected in China during the 2019–2020 seasonal influenza epidemic. Non-pharmaceutical interventions (NPIs) and behavioral changes to mitigate COVID-19 could have affected transmission dynamics of influenza and other respiratory diseases. By comparing 2019–2020 seasonal influenza activity through March 29, 2020 with the 2011–2019 seasons, we found that COVID-19 outbreaks and related NPIs may have reduced influenza in Southern and Northern China and the United States by 79.2% (lower and upper bounds: 48.8%–87.2%), 79.4% (44.9%–87.4%) and 67.2% (11.5%–80.5%). Decreases in influenza virus infection were also associated with the timing of NPIs. Without COVID-19 NPIs, influenza activity in China and the United States would likely have remained high during the 2019–2020 season. Our findings provide evidence that NPIs can partially mitigate seasonal and, potentially, pandemic influenza. Non-pharmaceutical interventions (NPIs) implemented to interrupt COVID-19 transmission may also impact the spread of other infectious diseases. Here, the authors estimate that influenza activity in China and the United States reduced by up to 80% when NPIs were in place in the 2019–2020 season.
Inference of person-to-person transmission of COVID-19 reveals hidden super-spreading events during the early outbreak phase
Coronavirus disease 2019 (COVID-19) was first identified in late 2019 in Wuhan, Hubei Province, China and spread globally in months, sparking worldwide concern. However, it is unclear whether super-spreading events occurred during the early outbreak phase, as has been observed for other emerging viruses. Here, we analyse 208 publicly available SARS-CoV-2 genome sequences collected during the early outbreak phase. We combine phylogenetic analysis with Bayesian inference under an epidemiological model to trace person-to-person transmission. The dispersion parameter of the offspring distribution in the inferred transmission chain was estimated to be 0.23 (95% CI: 0.13–0.38), indicating there are individuals who directly infected a disproportionately large number of people. Our results showed that super-spreading events played an important role in the early stage of the COVID-19 outbreak. Although SARS-CoV-2 has spread rapidly, the contribution of super-spreading events to transmission is unclear. Here, the authors show that the number of secondary infections arising from an individual infection in the early phase of the outbreak was highly skewed, indicating that super-spreading events occurred.
Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010
China has undergone rapid demographic and epidemiological changes in the past few decades, including striking declines in fertility and child mortality and increases in life expectancy at birth. Popular discontent with the health system has led to major reforms. To help inform these reforms, we did a comprehensive assessment of disease burden in China, how it changed between 1990 and 2010, and how China's health burden compares with other nations. We used results of the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) for 1990 and 2010 for China and 18 other countries in the G20 to assess rates and trends in mortality, causes of death, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE). We present results for 231 diseases and injuries and for 67 risk factors or clusters of risk factors relevant to China. We assessed relative performance of China against G20 countries (significantly better, worse, or indistinguishable from the G20 mean) with age-standardised rates and 95% uncertainty intervals. The leading causes of death in China in 2010 were stroke (1·7 million deaths, 95% UI 1·5–1·8 million), ischaemic heart disease (948 700 deaths, 774 500–1 024 600), and chronic obstructive pulmonary disease (934 000 deaths, 846 600–1 032 300). Age-standardised YLLs in China were lower in 2010 than all emerging economies in the G20, and only slightly higher than noted in the USA. China had the lowest age-standardised YLD rate in the G20 in 2010. China also ranked tenth (95% UI eighth to tenth) for HALE and 12th (11th to 13th) for life expectancy. YLLs from neonatal causes, infectious diseases, and injuries in children declined substantially between 1990 and 2010. Mental and behavioural disorders, substance use disorders, and musculoskeletal disorders were responsible for almost half of all YLDs. The fraction of DALYs from YLDs rose from 28·1% (95% UI 24·2–32·5) in 1990 to 39·4% (34·9–43·8) in 2010. Leading causes of DALYs in 2010 were cardiovascular diseases (stroke and ischaemic heart disease), cancers (lung and liver cancer), low back pain, and depression. Dietary risk factors, high blood pressure, and tobacco exposure are the risk factors that constituted the largest number of attributable DALYs in China. Ambient air pollution ranked fourth (third to fifth; the second highest in the G20) and household air pollution ranked fifth (fourth to sixth; the third highest in the G20) in terms of the age-standardised DALY rate in 2010. The rapid rise of non-communicable diseases driven by urbanisation, rising incomes, and ageing poses major challenges for China's health system, as does a shift to chronic disability. Reduction of population exposures from poor diet, high blood pressure, tobacco use, cholesterol, and fasting blood glucose are public policy priorities for China, as are the control of ambient and household air pollution. These changes will require an integrated government response to improve primary care and undertake required multisectoral action to tackle key risks. Analyses of disease burden provide a useful framework to guide policy responses to the changing disease spectrum in China. Bill & Melinda Gates Foundation.