Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
39
result(s) for
"Gao, Shushan"
Sort by:
Chemoenzymatic Synthesis of Selegiline: An Imine Reductase-Catalyzed Approach
2024
(R)-Homobenzylic amines are key structural motifs present in (R)-selegiline, a drug indicated for the treatment of early-stage Parkinson’s disease. Herein, we report a new short chemoenzymatic approach (in 2 steps) towards the synthesis of (R)-selegiline via stereoselective biocatalytic reductive amination as the key step. The imine reductase IR36-M5 mutant showed high conversion (97%) and stereoselectivity (97%) toward the phenylacetone and propargyl amine substrates, offering valuable biocatalysts for synthesizing alkylated homobenzylic amines.
Journal Article
An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters
2019
Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe
Streptococcus mutans
UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of
S. mutans
UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria.
Anaerobic bacteria represent a rich source of biological and chemical diversity but are difficult to cultivate and there is a lack of heterologous expression systems. Here the authors develop an expression system based on
S. mutans
UA159 for biosynthetic gene clusters from anaerobic bacteria.
Journal Article
A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw
2022
Chemical pretreatment can significantly improve the enzymatic hydrolysis efficiency of lignocellulosic biomass, thereby improving the yield of sugar materials for the production of cellulosic ethanol, but commonly used acid–base catalysts are difficult to recover and reuse. In this work, a combination method of liquid hot water (LHW) and phosphotungstic acid (PTA) pretreatment was performed to improve the saccharification efficiency of rice straw, and we attempted to evaluate the reuse effect of PTA catalysts. The rice straw was first treated with LHW at 180 °C for 90 min, and then treated with 20 mM PTA at 130 °C for 60 min. After pretreatment, the cellulose hydrolysis efficiency and glucose recovery of the rice straw increased by 201.85% and 164.25%, respectively. Glucose accounted for 96.8% of the total reducing sugar in the final enzymatic hydrolysate. After each PTA pretreatment, approximately 70.8–73.2% of the PTA catalyst could be recycled. Moreover, the catalytic activity of the PTA catalyst that had been used five times did not decrease. The improved enzymatic saccharification efficiency was attributed to the removal of 89.24% hemicellulose and 21.33% lignin from the lignocellulosic substrate. The two-step LHW-PTA pretreatment could pretreat biomass in the field of cellulosic ethanol production.
Journal Article
Preparation of an Aminated Lignin/Fe(III)/Polyvinyl Alcohol Film: A Packaging Material with UV Resistance and Slow-Release Function
by
Gao, Shushan
,
Ma, Liangfei
,
Zhu, Chonghao
in
Biocompatibility
,
Bonding strength
,
Caustic soda
2023
To reduce the usage of petroleum-based plastic products, a lignin-based film material named aminated lignin/Fe(III)/PVA was developed. The mixture of 8 g lignin, 12 mL diethylenetriamine, 200 mL NaOH solution (0.4 mol·L−1), and 8 mL formaldehyde was heated at 85 °C for 4 h; after the aminated lignin was impregnated in the Fe(NO3)3 solution, a mixture of 3 g aminated lignin/Fe(III), 7 g PVA, and 200 mL NaOH solution (pH 8) was heated at 85 °C for 60 min; after 2 mL of glycerin was added, the mixture was spread on a glass plate to obtain the aminated lignin/Fe(III)/PVA film. This film demonstrated hydrophobicity, an UV-blocking function, and a good slow-release performance. Due to the formation of hydrogen bonds between the hydroxyl groups of lignin and PVA, the tensile strength, the elongation at break, and the fracture resistance of the film were 9.1%, 107.8%, and 21.9% higher than that of pure PVA film, respectively. The iron content of aminated lignin/Fe(III)/PVA was 1.06 wt%, which mainly existed in a trivalent form. The aminated lignin/Fe(III)/PVA film has the potential to be used as a food packaging material with anti-ultraviolet light function and can also be developed as other packaging materials, such as seedling bowls, pots for transplanting, and coating films during transport.
Journal Article
Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118
by
Li, Chunshun
,
Meng, Li
,
Huang, Caiguo
in
Antibacterial materials
,
Antibiotics
,
Antimicrobial activity
2012
Bioassay-guided fractionation of the crude extract from Penicillium commune SD-118, a fungus obtained from a deep-sea sediment sample, resulted in the isolation of a known antibacterial compound, xanthocillin X (1), and 14 other known compounds comprising three steroids (2–4), two ceramides (5 and 6), six aromatic compounds (7–12), and three alkaloids (13–15). Xanthocillin X (1) was isolated for the first time from a marine fungus. In the bioassay, xanthocillin X (1) displayed remarkable antimicrobial activity against Staphylococcus aureus and Escherichia coli, and significant cytotoxicity against MCF-7, HepG2, H460, Hela, Du145, and MDA-MB-231 cell lines. Meleagrin (15) exhibited cytotoxicity against HepG2, Hela, Du145, and MDA-MB-231 cell lines. This is the first report of the cytotoxicity of xanthocillin X (1).
Journal Article
Chemical constituents of marine mangrove-derived endophytic fungus Alternaria tenuissima EN-192
2013
A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternariatenuissima EN-192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophorastylosa, resulted in the isolation of nine known secondary metabolites, including four indole-diterpenoids: penijanthine A (1), paspaline (2), paspalinine (3), and penitrem A (4); three tricycloalternarene derivatives: tricycloalternarene 3a (5), tricycloalternarene 1b (6), and tricycloalternarene 2b (7); and two alternariol congeners: djalonensone (8) and alternariol (9). The chemical structures of these metabolites were characterized through a combination of detailed spectroscopic analyses and their comparison with reports from the literature. The inhibitory activities of each isolated compound against four bacteria were evaluated and compounds 5 and 8 displayed moderate activity against the aquaculture pathogenic bacterium Vibrioanguillarum, with inhibition zone diameters of 8 and 9 mm, respectively, at 100 μg/disk. To the best of our knowledge, this is the first report on the secondary metabolites of mangrove-derived A lternaria tenuissima and also the first report of the isolation of indole-diterpenoids from fungal genus A lternaria.
Journal Article
Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi
2021
Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 μM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products.Key points• Genome mining of the first BFTS BGC harboring a glycosyltransferase.• Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids.• Biosynthetic pathway of isolated sesterterpenoids was proposed.
Journal Article
A Value-Added Utilization Method of Sugar Production By-Products from Rice Straw: Extraction of Lignin and Evaluation of Its Antioxidant Activity
2022
To value-added utilization of the rice straw, two types of lignin were extracted from the by-products of sugar production. The ether-extracted lignin with a purity of 98.7% was extracted from the pretreatment filtrate with two times the concentrated filtrate volume of ether, where the lignin yield was 6.62 mg/g of the rice straw. The ball-milled lignin with a purity of 99.6% was extracted from the milled enzymatic hydrolysis residue with a 1,4-dioxane solution, where the revolution speed and grinding time were 300 rpm and 12 h, respectively. The yield of ball-milled lignin was 34.52 mg/g of the rice straw, which was 421.5% higher than that extracted from extract-free rice straw. In the process of rice straw pretreatment and lignin extraction, 76.43% by mass of phosphotungstic acid catalyst and approximately 98% by volume of 1,4-dioxane solution could be recycled and reused. Compared with the soda lignin extracted from papermaking black liquor, the scavenging rates of DPPH radical and ABTS+ radical of ether-extracted lignin increased by 36.26% and 41.18%, respectively, while the above scavenging rates of ball-milled lignin increased by 30.22% and 37.75%, respectively. Moreover, the reducing power of the two extracted lignins was also stronger than that of soda lignin. The ether-extracted lignin and ball-milled lignin have the potential to be developed as natural macromolecular antioxidants.
Journal Article
Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy
2022
Mitochondria hold redox homeostasis and energy metabolism as a crucial factor during oocyte maturation, while the exposure of estrogenic mycotoxin zearalenone causes developmental incapacity in porcine oocyte. This study aimed to reveal a potential resistance of phytoalexin resveratrol against zearalenone during porcine oocyte maturation and whether its mechanism was related with PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Porcine oocytes were exposed to 20 μM zearalenone with or without 2 μM resveratrol during in vitro maturation. As for the results, zearalenone impaired ultrastructure of mitochondria, causing mitochondrial depolarization, oxidative stress, apoptosis and embryonic developmental incapacity, in which mitophagy was induced in response to mitochondrial dysfunction. Phytoalexin resveratrol enhanced mitophagy through PINK1/Parkin in zearalenone-exposed oocytes, manifesting as enhanced mitophagy flux, upregulated PINK1, Parkin, microtubule-associated protein light-chain 3 beta-II (LC3B-II) and downregulated substrates mitofusin 2 (MFN2), voltage-dependent anion channels 1 (VDAC1) and p62 expressions. Resveratrol redressed zearalenone-induced mitochondrial depolarization, oxidative stress and apoptosis, and accelerated mitochondrial DNA copy during maturation, which improved embryonic development. This study offered an antitoxin solution during porcine oocyte maturation and revealed the involvement of PINK1/Parkin-mediated mitophagy, in which resveratrol mitigated zearalenone-induced embryonic developmental incapacity.
Journal Article
Transcriptomic and metabolomic dissection of skeletal muscle of crossbred Chongming white goats with different meat production performance
2024
Background
The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs).
Results
A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (
TNNT1
,
TNNC1
,
TNNI1
,
MYBPC2
,
MYL2
,
MHY7
, and
CSRP3
) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (
TNNT1
,
FABP3
,
TPM3
,
DES
,
PPP1R27
,
RCAN1
,
LMOD2
) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites.
Conclusion
This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.
Journal Article