Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
85
result(s) for
"Garfinkel, Chaim I."
Sort by:
The Winter North Pacific Teleconnection in Response to ENSO and the MJO in Operational Subseasonal Forecasting Models Is Too Weak
2022
Teleconnection patterns associated with the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO) impact weather and climate phenomena in the Pacific–North American region and beyond, and therefore accurately simulating these teleconnections is of importance for seasonal and subseasonal forecasts. Systematic biases in boreal midwinter ENSO and MJO teleconnections are found in eight subseasonal to seasonal (S2S) forecast models over the Pacific–North America region. All models simulate an anomalous 500-hPa geopotential height response that is too weak. This overly weak response is associated with overly weak subtropical upper-level convergence and a too-weak Rossby wave source in most models, and in several models there is also a biased subtropical Pacific jet, which affects the propagation of Rossby waves. In addition to this overly weak response, all models also simulate ENSO teleconnections that reach too far poleward toward Alaska and northeastern Russia. The net effect is that these models likely underestimate the impacts associated with the MJO and ENSO over western North America, and suffer from a reduction in skill from what could be achieved.
Journal Article
How Does the Quasi-Biennial Oscillation Affect the Boreal Winter Tropospheric Circulation in CMIP5/6 Models?
by
White, Ian P.
,
Rao, Jian
,
Garfinkel, Chaim I.
in
Anomalies
,
Arctic Oscillation
,
Brunt-vaisala frequency
2020
Using 17 CMIP5 and CMIP6 models with a spontaneously generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: 1) the Holtan–Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), 2) the subtropical zonal wind downward arching over the Pacific, and 3) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. First, seven models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the HT effect in the reanalysis. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the chain for QBO, vortex, and tropospheric NAM/AO is not simulated. For the second pathway associated with the downward arching of the QBO winds, 10 models simulate an inconsistent extratropical easterly anomaly center over 20°–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not present in those models, leading to no consensus on the height response over the North Pacific between those models and the reanalysis. However, the other seven models do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Seven models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the JRA55 reanalysis, and 10 models consistently confirm little modulation of the ocean basinwide Walker circulation and ENSO events by the QBO.
Journal Article
CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century
2021
Using state-of-the-art models from the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5/6), future changes of sudden stratospheric warming (SSW) events under a moderate emission scenario (RCP45/SSP245) and a strong emissions scenario (RCP85/SSP585) are evaluated with respect to the historical simulations. Changes in four characteristics of SSWs are examined in 54 models: the SSW frequency, the seasonal distribution, stratosphere-troposphere coupling, and the persistency of the distorted or displaced polar vortex. The composite results show that none of these four aspects will change robustly. An insignificant (though positive) change in the SSW frequency from historical simulations to RCP45/SSP245 and then to RCP85/SSP585 is consistently projected by CMIP5 and CMIP6 multimodel ensembles in most wintertime months (December-March). This increase in the SSW frequency is most pronounced in mid- (late-) winter in CMIP6 (CMIP5). No shift in the seasonality of SSWs is simulated especially in the CMIP6 future scenarios. Both the reanalysis and CMIP5/6 historical simulations exhibit strong stratosphere-troposphere coupling during SSWs, and the coupling strength is nearly unchanged in the future scenario simulations. The near surface responds immediately after the onset of SSWs in both historical and future scenarios experiments, denoted by the deep downward propagation of zonal-mean easterly anomalies from the stratosphere to the troposphere. On average, the composite circumpolar easterly winds persist for 8 d in the reanalysis and CMIP5/6 historical experiments, which are projected to remain unchanged in both the moderate and strong emissions scenarios, implying the lifecycle of SSWs will not change.
Journal Article
Development of the Extratropical Response to the Stratospheric Quasi-Biennial Oscillation
by
White, Ian P.
,
Rao, Jian
,
Garfinkel, Chaim I.
in
Atmosphere
,
Atmospheric models
,
Climate models
2021
Using the Model of an Idealized Moist Atmosphere (MiMA) capable of spontaneously generating a quasibiennial oscillation (QBO), the gradual establishment of the extratropical response to the QBO is explored. The period and magnitude of the QBO and the magnitude of the polar Holton–Tan (HT) relationship is simulated in a free-running configuration of MiMA, comparable to that in state-of-the-art climate models. To isolate mechanisms whereby the QBO influences variability outside the tropical atmosphere, a series of branch experiments are performed with nudged QBO winds. When easterly QBO winds maximized around 30 hPa are relaxed, an Eliassen–Palm (E-P) flux divergence dipole quickly forms in the extratropical middle stratosphere as a direct response to the tropical meridional circulation, in contrast to the HT mechanism, which is associated with wave propagation near the zero wind line. This meridional circulation response to the relaxed QBO winds develops within the first 10 days in seasonally varying and fixed-seasonal experiments. No detectable changes in upward propagation of waves in the midlatitude lowermost stratosphere are evident for at least 20 days after branching, with the first changes only evident after 20 days in perpetual midwinter and season-varying runs, but after 40 days in perpetual November runs. The polar vortex begins to respond around the 20th day, and subsequently a near-surface response in the Atlantic Ocean sector forms in mid-to-late winter runs. These results suggest that the maximum near-surface response observed in mid-to-late winter is not simply due to a random seasonal synchronization of the QBO phase, but is also due to the long lag of the surface response to a QBO relaxation in early winter and the short lag of the surface response to a QBO relaxation in mid-to-late winter.
Journal Article
The Role of the Stratosphere in Teleconnections Arising From Fast and Slow MJO Episodes
by
Yadav, Priyanka
,
Garfinkel, Chaim I.
,
Domeisen, Daniela I. V.
in
Anomalies
,
atmospheric circulation
,
Convection
2024
The Madden-Julian Oscillation (MJO) can influence the extratropical circulation on timescales up to several weeks, with a dependence on the MJO characteristics: MJO episodes that propagate slowly across the Maritime Continent have a stronger impact on Euro-Atlantic weather than fast MJO episodes. While the tropospheric pathway for MJO teleconnections with varying phase speeds is well understood, in this study, we investigate the contribution of the Northern Hemisphere stratospheric pathway for fast versus slow MJO episodes. During slow MJO episodes, Phases 5–6 lead to increased upward wave propagation in the North Pacific sector, and subsequently enhanced heat flux at 100 hPa, leading to the weakening of the polar vortex. The results suggest a clear role of stratosphere-troposphere coupling for slow MJO episodes, which is proposed as a mechanism for anomalously strong positive polar cap height anomalies in MJO Phases 7–8.
Journal Article
The Generic Nature of the Tropospheric Response to Sudden Stratospheric Warmings
2020
The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ∼2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ∼3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index.
Journal Article
Tropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices
by
Hartmann, Dennis L.
,
Sassi, Fabrizio
,
Garfinkel, Chaim I.
in
Atmosphere
,
Climate models
,
Climatic zones
2010
Regional extratropical tropospheric variability in the North Pacific and eastern Europe is well correlated with variability in the Northern Hemisphere wintertime stratospheric polar vortex in both the ECMWF reanalysis record and in the Whole Atmosphere Community Climate Model. To explain this correlation, the link between stratospheric vertical Eliassen–Palm flux variability and tropospheric variability is analyzed. Simple reasoning shows that variability in the North Pacific and eastern Europe can deepen or flatten the wintertime tropospheric stationary waves, and in particular its wavenumber-1 and -2 components, thus providing a physical explanation for the correlation between these regions and vortex weakening. These two pathways begin to weaken the upper stratospheric vortex nearly immediately, with a peak influence apparent after a lag of some 20 days. The influence then appears to propagate downward in time, as expected from wave–mean flow interaction theory. These patterns are influenced by ENSO and October Eurasian snow cover. Perturbations in the vortex induced by the two regions add linearly. These two patterns and the quasi-biennial oscillation (QBO) are linearly related to 40% of polar vortex variability during winter in the reanalysis record.
Journal Article
Drivers of the Recent Tropical Expansion in the Southern Hemisphere
by
Waugh, Darryn W.
,
Polvani, Lorenzo M.
,
Garfinkel, Chaim I.
in
Antarctic ozone
,
Atmospheric circulation
,
Climate change
2015
Observational evidence indicates that the southern edge of the Hadley cell (HC) has shifted southward during austral summer in recent decades. However, there is no consensus on the cause of this shift, with several studies reaching opposite conclusions as to the relative role of changes in sea surface temperatures (SSTs) and stratospheric ozone depletion in causing this shift. Here, the authors perform a meta-analysis of the extant literature on this subject and quantitatively compare the results of all published studies that have used single-forcing model integrations to isolate the role of different factors on the HC expansion during austral summer. It is shown that the weight of the evidence clearly points to stratospheric ozone depletion as the dominant driver of the tropical summertime expansion over the period in which an ozone hole was formed (1979 to late 1990s), although SST trends have contributed to trends since then. Studies that have claimed SSTs as the major driver of tropical expansion since 1979 have used prescribed ozone fields that underrepresent the observed Antarctic ozone depletion.
Journal Article
The Matsuno–Gill model on the sphere
2023
We extend the Matsuno–Gill model, originally developed on the equatorial $\\beta$-plane, to the surface of the sphere. While on the $\\beta$-plane the non-dimensional model contains a single parameter, the damping rate $\\gamma$, on a sphere the model contains a second parameter, the rotation rate $\\epsilon ^{1/2}$ (Lamb number). By considering the different combinations of damping and rotation, we are able to characterize the solutions over the $(\\gamma, \\epsilon ^{1/2})$ plane. We find that the $\\beta$-plane approximation is accurate only for fast rotation rates, where gravity waves traverse a fraction of the sphere's diameter in one rotation period. The particular solutions studied by Matsuno and Gill are accurate only for fast rotation and moderate damping rates, where the relaxation time is comparable to the time on which gravity waves traverse the sphere's diameter. Other regions of the parameter space can be described by different approximations, including radiative relaxation, geostrophic, weak temperature gradient and non-rotating approximations. The effect of the additional parameter introduced by the sphere is to alter the eigenmodes of the free system. Thus, unlike the solutions obtained by Matsuno and Gill, where the long-term response to a symmetric forcing consists solely of Kelvin and Rossby waves, the response on the sphere includes other waves as well, depending on the combination of $\\gamma$ and $\\epsilon ^{1/2}$. The particular solutions studied by Matsuno and Gill apply to Earth's oceans, while the more general $\\beta$-plane solutions are only somewhat relevant to Earth's troposphere. In Earth's stratosphere, Venus and Titan, only the spherical solutions apply.
Journal Article
Attribution analysis of the persistent and extreme drought in southwest China during 2022–2023
by
Cai, Qingyu
,
Gao, Lu
,
Hu, Peng
in
Anthropogenic factors
,
anthropogenic forcing
,
attribution analysis
2024
Southwest China experienced a severe drought during winter 2022–spring 2023. This drought mainly struck Yunnan Province and surrounding regions (21°–30° N, 97°–106° E), with precipitation deficit lasting for about 8 months from Oct 2022 to May 2023. The area-mean precipitation and surface soil moisture in the study region during the drought were both the lowest recorded for the same period since 1950. The Standardized Precipitation Evapotranspiration Index (SPEI) also reached its lowest level since 1950 at −2.76. Quantitative analysis shows that precipitation deficit and potential evapotranspiration (PET) increase contributed 71.36%, and 28.64% to the SPEI, respectively. Of the raw contribution of PET, 7.05% can in turn be attributed to the changes in precipitation. Using data from the CMIP6 Detection and Attribution Model Intercomparison Project (DAMIP), we found that anthropogenic forcing increased the likelihood of a PET anomaly such as the one during the drought by about 133 times, with a fraction of attributable risk (FAR) of 0.99 [0.98, 1.00]. For the precipitation anomaly, we obtained a FAR of 0.26 [−1.12, 0.70], suggesting that anthropogenic forcings may have little impact. The extreme drought also increased the risk of fires, with the Fire Weather Index reaching its second-highest value since 1950 and abnormally high burned areas observed by satellites.
Journal Article