Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Gargiulo, Simona"
Sort by:
Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease
Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain's high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion
In 2019, in southern Italy (Campania) there was an outbreak of a sap beetle infesting stored walnut fruits. A monitoring activity started to assess the spread and impact of the pest in walnut orchards and in warehouses, and an integrative characterization led to identify the beetle as Carpophilus truncatus . This species has been in Europe for a long time, rare and harmless until recently. We show also that this species is the same recently recorded in other two continents, Latin America and Australia, where it is causing massive damage on walnut and almond fruits. The sharing of a mitochondrial haplotype among populations recorded on three continents suggests that a worldwide invasion might be ongoing. A Geographic Profiling approach has determined that the more virulent population was first introduced in Italy, and the climate conditions of areas where C. truncatus is currently widespread and harmful indicate that the entire walnuts world production is in jeopardy as this species could adapt to any of the main walnut and almond production areas.
Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols
Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.
An Integrative Study on Asphondylia spp. (Diptera: Cecidomyiidae), Causing Flower Galls on Lamiaceae, with Description, Phenology, and Associated Fungi of Two New Species
An integrative study on some species of Asphondylia was carried out. Two species of gall midges from Italy, Asphondylia rivelloi sp. nov. and Asphondylia micromeriae sp. nov. (Diptera: Cecidomyiidae), causing flower galls respectively on Clinopodium vulgare and Micromeria graeca (Lamiaceae), are described and illustrated. The characteristics of each developmental stage and induced galls are described, which allowed the discrimination of these new species in the complex of Asphondylia developing on Lamiaceae plants. Molecular data based on sequencing both nuclear (ITS2 and 28S-D2) and mitochondrial (COI) genes are also provided in support of this discrimination. Phylogeny based on nuclear markers is consistent with the new species, whereas COI phylogeny suggests introgression occurring between the two species. However, these species can also be easily identified using a morphological approach. Phenology of host plants and gall midges are described, and some peculiar characteristics allow the complete and confident discrimination and revision of the treated species. Gall-associated fungi were identified as Botryosphaeria dothidea,Alternaria spp., and Cladosporium spp.
Relation between TLR4/NF-kappaB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability
Summary It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll-like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low-density lipoproteins, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high-risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27-OH and HNE were found to enhance cell release of IL-8, IL-1[beta], and TNF-[alpha] and to upregulate matrix metalloproteinase-9 (MMP-9) via TLR4/NF-[kappa]B-dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP-9 upregulation, thus enhancing the release of this matrix-degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP-9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF-[kappa]B downstream signaling.
Up‐regulation of β‐amyloidogenesis in neuron‐like human cells by both 24‐ and 27‐hydroxycholesterol: protective effect of N‐acetyl‐cysteine
Summary An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27‐hydroxycholesterol (27‐OH) and 24‐hydroxycholesterol (24‐OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK‐N‐BE human neuroblastoma cells with patho‐physiologically relevant amounts of 27‐OH and 24‐OH showed that both oxysterols induce a net synthesis of Aβ1‐42 by up‐regulating expression levels of amyloid precursor protein and β‐secretase, as well as the β‐secretase activity. Interestingly, cell pretreatment with N‐acetyl‐cysteine (NAC) fully prevented the enhancement of β‐amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β‐amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols‐induced Aβ toxic peptide accumulation in the brain.
Up-regulation of beta-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine
Summary An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of A[beta]1-42 by up-regulating expression levels of amyloid precursor protein and [beta]-secretase, as well as the [beta]-secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of [beta]-amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive [beta]-amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols-induced A[beta] toxic peptide accumulation in the brain. [PUBLICATION ABSTRACT]
Molecular Signaling Involved in Oxysterol-Induced β1-Integrin Over-Expression in Human Macrophages
The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of β1-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce β1-integrin up-regulation is also comprehensively investigated. Over-expression of β1-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of β1-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression.
Molecular Signaling Involved in Oxysterol-Induced beta1-Integrin Over-Expression in Human Macrophages
The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of β1-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce β1-integrin up-regulation is also comprehensively investigated. Over-expression of β1-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of β1-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression.
Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols: e96795
Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7 beta -hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into beta -cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.