Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Gatz, Christiane"
Sort by:
TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression
Salicylic acid (SA), a hormone essential for defense against biotrophic pathogens, triggers increased susceptibility of plants against necrotrophic attackers by suppressing the jasmonic acid-ethylene (ET) defense response. Here, we show that this diseasepromoting SA effect is abolished in plants lacking the three related TGACG sequence-specific binding proteins TGA2, TGA5, and TGA6 (class II TGAs). After treatment of plants with the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC), activation of all those genes that are suppressed by SA depended on class II TGAs. Rather than TGA binding sites, GCC-box motifs were significantly enriched in the corresponding promoters. GCC-box motifs are recognized by members of the superfamily of APETALA2/ETHYLENE RESPONSE FACTORS (ERFs). Of 11 activating ACC-induced APETALA2/ERFs, only ORA59 (for OCTADECANOID-RESPONSIVE ARABIDOPSIS APETALA2/ETHYLENE RESPONSE FACTOR domain protein59) and ERF96 were strongly suppressed by SA. ORA59 is the master regulator of the jasmonic acid-ET-induced defense program. ORA59 transcript levels do not reach maximal levels in the tga2 tga5 tga6 triple mutant, and this residual activity cannot be suppressed by SA. The ORA59 promoter contains an essential TGA binding site and is a direct target of class II TGAs as revealed by chromatin immunoprecipitation experiments. We suggest that class II TGAs at the ORA59 promoter constitute an important regulatory hub for the activation and SA suppression of ACC-induced genes.
Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms. Here we show that Arabidopsis thaliana class III GRX ROXY9 is inactive as an oxidoreductase on widely used model substrates. Glutathionylation of the active site cysteine, a prerequisite for enzymatic activity, occurs only under highly oxidizing conditions established by the GSH/glutathione disulfide (GSSG) redox couple, while class I GRXs are readily glutathionylated even at very negative GSH/GSSG redox potentials. Thus, structural alterations in the GSH binding site leading to an altered GSH binding mode likely explain the enzymatic inactivity of ROXY9. This might have evolved to avoid overlapping functions with class I GRXs and raises questions of whether ROXY9 regulates TGA substrates through redox regulation. Plant-specific class III glutaredoxins regulate the activity of TGA transcription factors. Here, the authors show that that ROXY9, a member of the class III of glutaredoxins, lacks oxidoreductase activity due to unfavourable positioning of glutathione. Consequently, class III glutaredoxins may not regulate gene expression through redox modifications of target proteins.
Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum
Verticillium longisporum is a soil‐borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. Metabolite fingerprinting identified infection‐induced metabolites derived from the phenylpropanoid pathway. Targeted analysis confirmed the accumulation of sinapoyl glucosides, coniferin, syringin and lignans in leaves from early stages of infection on. At later stages, the amounts of amino acids increased. To test the contribution of the phenylpropanoid pathway, mutants in the pathway were analyzed. The sinapate‐deficient mutant fah1‐2 showed stronger infection symptoms than wild‐type plants, which is most likely due to the lack of sinapoyl esters. Moreover, the coniferin accumulating transgenic plant UGT72E2‐OE was less susceptible. Consistently, sinapoyl glucose, coniferyl alcohol and coniferin inhibited fungal growth and melanization in vitro, whereas sinapyl alcohol and syringin did not. The amount of lignin was not significantly altered supporting the notion that soluble derivatives of the phenylpropanoid pathway contribute to defense. These data show that soluble phenylpropanoids are important for the defense response of Arabidopsis against V. longisporum and that metabolite fingerprinting is a valuable tool to identify infection‐relevant metabolic markers.
Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis
Terpene volatiles play important roles in plant-organism interactions as attractants of pollinators or as defense compounds against herbivores. Among the most common plant volatiles are homoterpenes, which are often emitted from night-scented flowers and from aerial tissues upon herbivore attack. Homoterpene volatiles released from herbivore-damaged tissue are thought to contribute to indirect plant defense by attracting natural enemies of pests. Moreover, homoterpenes have been demonstrated to induce defensive responses in plant—plant interaction. Although early steps in the biosynthesis of homoterpenes have been elucidated, the identity of the enzyme responsible for the direct formation of these volatiles has remained unknown. Here, we demonstrate that CYP82G1 (At3g25180), a cytochrome P450 monooxygenase of the Arabidopsis CYP82 family, is responsible for the breakdown of the C₂₀-precursor (E,E)-geranyllinalool to the insect-induced C₁₆-homoterpene (E,E)-4,8 12-trimethyltrideca-1,3,7, 11-tetraene (TMTT). Recombinant CYP82G1 shows narrow substrate specificity for (E,E)-geranyllinalool and its C₁₅-analog (E)-nerolidol, which is converted to the respective C₁₁-homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Homology-based modeling and substrate docking support an oxidative bond cleavage of the alcohol substrate via syn-elimination of the polar head, together with an allylic C-5 hydrogen atom. CYP82G1 is constitutively expressed in Arabidopsis stems and inflorescences and shows highly coordinated herbivoreinduced expression with geranyllinalool synthase in leaves depending on the F-box protein COI-1. CYP82G1 represents a unique characterized enzyme in the plant CYP82 family with a function as a DMNT/TMTT homoterpene synthase.
Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana
Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes.
Arabidopsis PR-1 Promoter Contains Multiple Integration Sites for the Coactivator NPR1 and the Repressor SNI1
Systemic acquired resistance is a broad-spectrum plant immune response involving massive transcriptional reprogramming. The Arabidopsis (Arabidopsis thaliana) PATHOGENESIS-RELATED-1 (PR-1) gene has been used in numerous studies to elucidate transcriptional control mechanisms regulating systemic acquired resistance. WRKY transcription factors and basic leucine zipper proteins of the TGA family regulate the PR-1 promoter by binding to specific cis-elements. In addition, the promoter is under the control of two proteins that do not directly contact the DNA: the positive regulator NONEXPRESSOR OF PR GENES1 (NPR1), which physically interacts with TGA factors, and the repressor SUPPRESSOR OF NPR1, INDUCIBLE1 (SNI1). In this study, we analyzed the importance of the TGA-binding sites LS5 and LS7 and the WKRY box LS4 for regulation by NPR1 and SNI1. In the absence of LS5 and LS7, NPR1 activates the PR-1 promoter through a mechanism that requires LS4. Since transcriptional activation of WRKY genes is under the control of NPR1 and since LS4 is not sufficient for the activation of a truncated PR-1 promoter by the effector protein NPR1-VP16 in transient assays, it is concluded that the LS4-dependent activation of the PR-1 promoter is indirect. In the case of NPR1 acting directly through TGA factors at its target promoters, two TGA-binding sites are necessary but not sufficient for NPR1 function in transgenic plants and in the NPR-VP16-based trans-activation assay in protoplasts. SNI1 exerts its negative effect in the noninduced state by targeting unknown proteins associated with sequences between bp -816 and -573. Under induced conditions, SNI1 negatively regulates the function of WRKY transcription factors binding to WKRY boxes between bp -550 and -510.
TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2
Reactive electrophile species (RES), including prostaglandins, phytoprostanes and 12-oxo phytodienoic acid (OPDA), activate detoxification responses in plants and animals. However, the pathways leading to the activation of defense reactions related to abiotic or biotic stress as a function of RES formation, accumulation or treatment are poorly understood in plants. Here, the thiol-modification of proteins, including the RES-activated basic region/leucine zipper transcription factor TGA2, was studied. TGA2 contains a single cysteine residue (Cys186) that was covalently modified by reactive cyclopentenones but not required for induction of detoxification genes in response to OPDA or prostaglandin A1. Activation of the glutathione-S-transferase 6 (GST6) promoter was responsive to cyclopentenones but not to unreactive cyclopentanones, including jasmonic acid suggesting that thiol reactivity of RES is important to activate the TGA2-dependent signaling pathway resulting in GST6 activation We show that RES modify thiols in numerous proteins in vivo, however, thiol reactivity alone appears not to be sufficient for biological activity as demonstrated by the failure of several membrane permeable thiol reactive reagents to activate the GST6 promoter.
Induction of Jasmonoyl-Isoleucine (JA-Ile)-Dependent JASMONATE ZIM-DOMAIN (JAZ) Genes in NaCl-Treated Arabidopsis thaliana Roots Can Occur at Very Low JA-Ile Levels and in the Absence of the JA/JA-Ile Transporter JAT1/AtABCG16
The plant hormone jasmonoyl-isoleucine (JA-Ile) is an important regulator of plant growth and defense in response to various biotic and abiotic stress cues. Under our experimental conditions, JA-Ile levels increased approximately seven-fold in NaCl-treated Arabidopsis thaliana roots. Although these levels were around 1000-fold lower than in wounded leaves, genes of the JA-Ile signaling pathway were induced by a factor of 100 or more. Induction was severely compromised in plants lacking the JA-Ile receptor CORONATINE INSENSITIVE 1 or enzymes required for JA-Ile biosynthesis. To explain efficient gene expression at very low JA-Ile levels, we hypothesized that salt-induced expression of the JA/JA-Ile transporter JAT1/AtABCG16 would lead to increased nuclear levels of JA-Ile. However, mutant plants with different jat1 alleles were similar to wild-type ones with respect to salt-induced gene expression. The mechanism that allows COI1-dependent gene expression at very low JA-Ile levels remains to be elucidated.
Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana
• Salicylic acid (SA) is an important signaling molecule of the plant immune system. • In Arabidopsis thaliana, SA biosynthesis is indirectly modulated by the closely related transcription factors TGACG-BINDING FACTOR 1 and 4 (TGA1 and TGA4, respectively). They activate expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, the gene product of which regulates the key SA biosynthesis gene ISOCHORISMATE SYNTHASE 1. • Since TGA1 interacts with the SA receptor NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) in a redox-dependent manner and since the redox state of TGA1 is altered in SA-treated plants, TGA1 was assumed to play a role in the NPR1-dependent signaling cascade. Here, we identified 193 out of 2090 SA-induced genes that require TGA1/TGA4 for maximal expression after SA treatment. One robustly TGA1/TGA4-dependent gene encodes for the SA hydroxylase DOWNY MILDEW RESISTANT 6-LIKE OXYGENASE 1, suggesting an additional regulatory role of TGA1/TGA4 in SA catabolism. • Expression of TGA1/TGA4-dependent genes in mock/SA-treated or Pseudomonas-infected plants was rescued in the tga1 tga4 double mutant after introduction of a mutant genomic TGA1 fragment encoding a TGA1 protein without any cysteines. Thus, the functional significance of the observed redox modification of TGA1 in SA-treated tissues remains enigmatic.
Arabidopsis GRAS Protein SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of Stress-Inducible Promoters
The plant signaling molecule salicylic acid (SA) and/or xenobiotic chemicals like the auxin mimic 2,4-D induce transcriptional activation of defense- and stress-related genes that contain activation sequence-1 (as-1)-like cis-elements in their promoters. as-1-like sequences are recognized by basic/leucine zipper transcription factors of the TGA family. Expression of genes related to the SA-dependent defense program systemic acquired resistance requires the TGA-interacting protein NPR1. However, a number of as-1-containing promoters can be activated independently from NPR1. Here, we report the identification of Arabidopsis thaliana SCARECROW-like 14 (SCL14), a member of the GRAS family of regulatory proteins, as a TGA-interacting protein that is required for the activation of TGA-dependent but NPR1-independent SA- and 2,4-D-inducible promoters. Chromatin immunoprecipitation experiments revealed that class II TGA factors TGA2, TGA5, and/or TGA6 are needed to recruit SCL14 to promoters of selected SCL14 target genes identified by whole-genome transcript profiling experiments. The coding regions and the expression profiles of the SCL14-dependent genes imply that they might be involved in the detoxification of xenobiotics and possibly endogenous harmful metabolites. Consistently, plants ectopically expressing SCL14 showed increased tolerance to toxic doses of the chemicals isonicotinic acid and 2,4,6-triiodobenzoic acid, whereas the scl14 and the tga2 tga5 tga6 mutants were more susceptible. Hence, the TGA/SCL14 complex seems to be involved in the activation of a general broad-spectrum detoxification network upon challenge of plants with xenobiotics.