Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
122 result(s) for "Gautier, J.-M."
Sort by:
Invited review: Improving neonatal survival in small ruminants: science into practice
Neonatal mortality in small ruminant livestock has remained stubbornly unchanging over the past 40 years, and represents a significant loss of farm income, contributes to wastage and affects animal welfare. Scientific knowledge about the biology of neonatal adaptation after birth has been accumulating but does not appear to have had an impact in improving survival. In this paper, we ask what might be the reasons for the lack of impact of the scientific studies of lamb and kid mortality, and suggest strategies to move forward. Biologically, it is clear that achieving a good intake of colostrum, as soon as possible after birth, is crucial for neonatal survival. This provides fuel for thermoregulation, passive immunological protection and is involved in the development of attachment between the ewe and lamb. The behaviour of the lamb in finding the udder and sucking rapidly after birth is a key component in ensuring sufficient colostrum is ingested. In experimental studies, the main risk factors for lamb mortality are low birthweight, particularly owing to poor maternal nutrition during gestation, birth difficulty, litter size and genetics, which can all be partly attributed to their effect on the speed with which the lamb reaches the udder and sucks. Similarly, on commercial farms, low birthweight and issues with sucking were identified as important contributors to mortality. In epidemiological studies, management factors such as providing assistance with difficult births, were found to be more important than risk factors associated with housing. Social science studies suggest that farmers generally have a positive attitude to improving neonatal mortality but may differ in beliefs about how this can be achieved, with some farmers believing they had no control over early lamb mortality. Facilitative approaches, where farmers and advisors work together to develop neonatal survival strategies, have been shown to be effective in achieving management goals, such as optimising ewe nutrition, that lead to reductions in lamb mortality. We conclude that scientific research is providing useful information on the biology underpinning neonatal survival, such as optimal birthweights, lamb vigour and understanding the importance of sufficient colostrum intake, but the transfer of that knowledge would benefit from an improved understanding of the psychology of management change on farm. Developing tailored solutions, on the basis of adequate farm records, that make use of the now substantial body of scientific literature on neonatal mortality will help to achieve lower neonatal mortality.
TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams
A compact, quasi-4pi position sensitive silicon array, TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the -ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The 14N(d,p)15N reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the 15N ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.
Optimization of ISOL UCX Targets for Fission Induced by Fast Neutrons or Electrons
Two ways of production of radioactive beams using uranium carbide targets are taken into consideration: fission induced by fast neutrons and by bremsstrahlung radiation. For the SPIRAL 2 project, the fission of the uranium carbide target will be induced by a neutron flow created by bombarding a carbon converter with a 40 MeV high intensity primary deuteron beam. Calculations and design of the target in order to reach 1013 fission events per second with good release have been done. The second way is the photofission using an electron beam. In 2004 the ALTO project (Accélérateur Linéaire Auprès du Tandem d'Orsay) will give a 50 MeV/l0μA electron beam. This facility will allow more than 1011 fissions/s. In this case, the electron beam hits the target without converter. Calculations are realized in order to estimate the production and to choose the best target shape.
Neuregulin and BDNF Induce a Switch to NMDA Receptor-Dependent Myelination by Oligodendrocytes
Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.
Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors
Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. Myelin regeneration can occur spontaneously in demyelinating diseases but the underlying mechanisms are incompletely understood. Here the authors show that neuronal activity and glutamatergic synapses instruct oligodendrocyte progenitor cells to differentiate into new myelinating oligodendrocytes.