Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Gavard, Angeline E."
Sort by:
Structural insights into human brachyury DNA recognition and discovery of progressible binders for cancer therapy
by
Davis-Gilbert, Zachary W.
,
te Poele, Robert
,
Oh, Hans J.
in
631/154/309/2420
,
631/535/1266
,
631/57/2272/1590
2025
Brachyury is a transcription factor that plays an essential role in tumour growth of the rare bone cancer chordoma and is implicated in other solid tumours. Brachyury is minimally expressed in healthy tissues, making it a potential therapeutic target. Unfortunately, as a ligandless transcription factor, brachyury has historically been considered undruggable. To investigate direct targeting of brachyury by small molecules, we determine the structure of human brachyury both alone and in complex with DNA. The structures provide insights into DNA binding and the context of the chordoma associated G177D variant. We use crystallographic fragment screening to identify hotspots on numerous pockets on the brachyury surface. Finally, we perform follow-up chemistry on fragment hits and describe the progression of a thiazole chemical series into binders with low µM potency. Thus we show that brachyury is ligandable and provide an example of how crystallographic fragment screening may be used to target protein classes that are difficult to address using other approaches.
This study describes structures of the transcription factor brachyury revealing the mechanism of DNA recognition. They identify fragments using X-ray fragment screening and optimize these into potent ligands with potential as cancer therapeutics.
Journal Article
Structure of the helicase core of Werner helicase, a key target in microsatellite instability cancers
by
Engen, John R
,
Werni, Patrick
,
Gileadi, Opher
in
Adenosine Diphosphate - metabolism
,
Adenosine Triphosphate - metabolism
,
Binding sites
2021
Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517–1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional β-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn 2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.
Journal Article
Structures of the human transcription factor brachyury offer insights into DNA recognition, and identify small molecule binders for the development of degraders for cancer therapy
2024
The transcription factor brachyury is a member of the T-Box family of transcription factors. It is active during embryogenesis and is required for the formation of the posterior mesoderm and the notochord in vertebrates. Aside from its role in embryogenesis, brachyury plays an essential role in tumour growth of the rare chordoma bone cancer and is implicated in other solid tumours. Given that brachyury is minimally expressed in healthy tissues, these findings suggest that brachyury is a potential therapeutic target in cancer. Unfortunately, as a ligandless transcription factor, brachyury has historically been considered undruggable. To investigate direct targeting of brachyury by small molecules, we initially determined the structure of human brachyury both in complex with its cognate DNA and in the absence of DNA. Analysis of these structures provided insights into brachyury DNA binding and the structural context of the G177D variant which is strongly associated with chordoma risk. We used these structures to perform a crystallographic fragment screen of brachyury and identify hotspot regions on numerous pockets on the brachyury surface. Finally, we have performed follow-up chemistry on fragment hits and describe the structure-based progression of a thiazole-containing chemical series. Excitingly, we have produced brachyury binders with low µM potency that can serve as starting point for further medicinal chemistry efforts. These data show that brachyury is ligandable and provides an example of how crystallographic fragment screening may be used to find ligands to target protein classes that are traditionally difficult to address using other approaches.
Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition
by
Yosaatmadja, Yuliana
,
Baddock, Hannah T
,
Mchugh, Peter J
in
Binding sites
,
Biochemistry
,
Class switching
2021
ABSTRACT Artemis (DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in DNA double-strand break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Consistently, Artemis deficiency leads to radiosensitive congenital severe immune deficiency (RS-SCID). Artemis belongs to a structural superfamily of nucleases that contain conserved metallo-β-lactamase (MBL) and β-CASP (CPSF-Artemis-SNM1-Pso2) domains. Here, we present crystal structures of the catalytic domain of wild type and variant forms of Artemis that cause RS-SCID Omenn syndrome. The truncated catalytic domain of the Artemis is a constitutively active enzyme that with similar activity to a phosphorylated full-length protein. Our structures help explain the basis of the predominantly endonucleolytic activity of Artemis, which contrast with the predominantly exonuclease activity of the closely related SNM1A and SNM1B nucleases. The structures also reveal a second metal binding site in its β-CASP domain that is unique to Artemis. By combining our structural data that from a recently reported structure we were able model the interaction of Artemis with DNA substrates. Moreover, co-crystal structures with inhibitors indicate the potential for structure-guided development of inhibitors. Competing Interest Statement The authors have declared no competing interest.
Crystal Structure of the Werner’s Syndrome Helicase
2020
Werner syndrome helicase (WRN) plays important roles in multiple pathways of DNA repair and the maintenance of genome integrity. Recently, loss of WRN was identified as a strong synthetic lethal interaction for microsatellite instable (MSI) cancers making WRN a promising drug target. Yet, structural information for the helicase domain is lacking, which prevents structure-based design of drug molecules. In this study, we show that ATP binding and hydrolysis in the helicase domain are required for genome integrity and viability of MSI cancer cells. We then determined the crystal structure of an ADP bound form of the WRN helicase core at 2.2 Å resolution. The structure features an atypical mode of nucleotide binding with extensive contacts formed by motif VI, which in turn defines the relative positioning of the two RecA like domains. The structure features a novel additional β-hairpin in the second RecA and an unusual helical hairpin in the Zn2+ binding domain, and modelling DNA substrates based on existing RecQ DNA complexes suggests roles for these features in the binding of alternative DNA structures. We have further analysed possible interfaces formed from the interactions between the HRDC domain and the helicase core by NMR. Together, this study will facilitate the structure-based design of inhibitors against WRN helicase.